ﻻ يوجد ملخص باللغة العربية
We search for signs of falling evaporating bodies (FEBs, also known as exocomets) in photometric time series obtained for $beta$ Pictoris after fitting and removing its $delta$ Scuti type pulsation frequencies. Using photometric data obtained by the TESS satellite we determine the pulsational properties of the exoplanet host star $beta$ Pictoris through frequency analysis. We then prewhiten the 54 identified $delta$ Scuti p-modes and investigate the residual photometric time series for the presence of FEBs. We identify three distinct dipping events in the light curve of $beta$ Pictoris over a 105-day period. These dips have depths from 0.5 to 2 millimagnitudes and durations of up to 2 days for the largest dip. These dips are asymmetric in nature and are consistent with a model of an evaporating comet with an extended tail crossing the disk of the star. We present the first broadband detections of exocomets crossing the disk of $beta$ Pictoris, consistent with the predictions made 20 years earlier by Lecavelier Des Etangs et al. (1999). No periodic transits are seen in this time series. These observations confirm the spectroscopic detection of exocomets in Calcium H and K lines that have been seen in high resolution spectroscopy.
The bright $(V=3.86)$ star $beta$ Pictoris is a nearby young star with a debris disk and gas giant exoplanet, $beta$ Pictoris b, in a multi-decade orbit around it. Both the planets orbit and disk are almost edge-on to our line of sight. We carry out
The debris disk surrounding $beta$ Pictoris has a gas composition rich in carbon and oxygen, relative to solar abundances. Two possible scenarios have been proposed to explain this enrichment. The preferential production scenario suggests that the ga
The young and nearby star beta Pictoris (beta Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system
The Transiting Exoplanet Survey Satellite (TESS), launched successfully on 18th of April, 2018, will observe nearly the full sky and will provide time-series imaging data in ~27-day-long campaigns. TESS is equipped with 4 cameras; each has a field-of
We report the discovery of two intermediate-mass brown dwarfs (BDs), TOI-569b and TOI-1406b, from NASAs Transiting Exoplanet Survey Satellite mission. TOI-569b has an orbital period of $P = 6.55604 pm 0.00016$ days, a mass of $M_b = 64.1 pm 1.9 M_J$,