ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-order dependent anomalous Hall effect and magneto-optical effect in noncollinear antiferromagnets Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni)

138   0   0.0 ( 0 )
 نشر من قبل Wanxiang Feng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Noncollinear antiferromagnets (AFMs) have recently attracted a lot of attention owing to the potential emergence of exotic spin orders on geometrically frustrated lattices, which can be characterized by corresponding spin chiralities. By performing first-principles density functional calculations together with group-theory analysis and tight-binding modelling, here we systematically study the spin-order dependent anomalous Hall effect (AHE) and magneto-optical effect (MOE) in representative noncollinear AFMs Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The symmetry-related tensor shape of the intrinsic anomalous Hall conductivity (IAHC) for different spin orders is determined by analyzing the relevant magnetic point groups. We show that while only the ${xy}$ component of the IAHC tensor is nonzero for right-handed spin chirality, all other elements, $sigma_{xy}$, $sigma_{yz}$, and $sigma_{zx}$, are nonvanishing for a state with left-handed spin chirality owing to lowering of the symmetry. Our tight-binding arguments reveal that the magnitude of IAHC relies on the details of the band structure and that $sigma_{xy}$ is periodically modulated as the spin rotates in-plane. The IAHC obtained from first principles is found to be rather large, e.g., it amounts to 359 S/cm in Mn$_{3}$AgN. By extending our analysis to finite frequencies, we calculate the optical isotropy [$sigma_{xx}(omega)approxsigma_{yy}(omega)approxsigma_{zz}(omega)$] and the magneto-optical anisotropy [$sigma_{xy}(omega) eqsigma_{yz}(omega) eqsigma_{zx}(omega)$] of Mn$_{3}X$N. We argue that the spin-order dependent AHE and MOE are indispensable in detecting complex spin structures in noncollinear AFMs.



قيم البحث

اقرأ أيضاً

Magneto-optical Kerr effect, normally found in magnetic materials with nonzero magnetization such as ferromagnets and ferrimagnets, has been known for more than a century. Here, using first-principles density functional theory, we demonstrate large m agneto-optical Kerr effect in high temperature noncollinear antiferromagnets Mn$_{3}X$ ($X$ = Rh, Ir, or Pt), in contrast to usual wisdom. The calculated Kerr rotation angles are large, being comparable to that of transition metal magnets such as bcc Fe. The large Kerr rotation angles and ellipticities are found to originate from the lifting of the band double-degeneracy due to the absence of spatial symmetry in the Mn$_{3}X$ noncollinear antiferromagnets which together with the time-reversal symmetry would preserve the Kramers theorem. Our results indicate that Mn$_{3}X$ would provide a rare material platform for exploration of subtle magneto-optical phenomena in noncollinear magnetic materials without net magnetization.
Mn$_{3-x}$Ga (x = 0.1, 0.4, 0.7) thin films on MgO and SrTiO$_3$ substrates were investigated with magnetic anisotropy perpendicular to the film plane. An anomalous Hall-effect was observed for the tetragonal distorted lattice in the crystallographic D0$_{22}$ phase. The Hall resistivity $varrho_{xy}$ was measured in a temperature range from 20 to 330 K. The determined skew scattering and side jump coefficients are discussed with regard to the film composition and used substrate and compared to the crystallographic and magnetic properties.
144 - R. Miki , K. Zhao , T. Hajiri 2020
We report the growth of noncollinear antiferromagnetic (AFM) Mn$_3$Ni$_{0.35}$Cu$_{0.65}$N films and the orientation-dependent anomalous Hall effect (AHE) of (001) and (111) films due to nonzero Berry curvature. We found that post-annealing at 500$^c irc$C can significantly improve the AHE signals, though using the appropriate post-annealing conditions is important. The AHE and magnetization loops show sharp flipping at the coercive field in (111) films, while (001) films are hard to saturate by a magnetic field. The anomalous Hall conductivity of (111) films is an order of magnitude larger than that of (001) films. The present results provide not only a better understanding of the AHE in Mn$_3X$N systems but also further opportunities to study the unique phenomena related to noncollinear AFM.
278 - K. Zhao , T. Hajiri , H. Chen 2019
We report the anomalous Hall effect (AHE) in antiperovskite Mn$_{3}$NiN with substantial doping of Cu on the Ni site (i.e. Mn$_{3}$Ni$_{1-x}$Cu$_{x}$N), which stabilizes a noncollinear antiferromagnetic (AFM) order compatible with the AHE. Observed o n both sintered polycrystalline pieces and single crystalline films, the AHE does not scale with the net magnetization, contrary to the conventional ferromagnetic case. The existence of the AHE is explained through symmetry analysis based on the $Gamma_{rm 4g}$ AFM order in Cu doped Mn$_{3}$NiN. DFT calculations of the intrinsic contribution to the AHE reveal the non-vanishing Berry curvature in momentum space due to the noncollinear magnetic order. Combined with other attractive properties, antiperovskite Mn$_{3}$AN system offers great potential in AFM spintronics.
112 - S.H. Chun , Y.S. Kim , H.K. Choi 2006
Investigating the scaling behavior of annealed Ga$_{1-x}$Mn$_{x}$As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and e xtrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in T$_{C}$. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا