ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay between carrier and impurity concentrations in annealed Ga$_{1-x}$Mn$_{x}$As intrinsic anomalous Hall Effect

113   0   0.0 ( 0 )
 نشر من قبل Yun Daniel Park
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Investigating the scaling behavior of annealed Ga$_{1-x}$Mn$_{x}$As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in T$_{C}$. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.



قيم البحث

اقرأ أيضاً

Mn$_{3-x}$Ga (x = 0.1, 0.4, 0.7) thin films on MgO and SrTiO$_3$ substrates were investigated with magnetic anisotropy perpendicular to the film plane. An anomalous Hall-effect was observed for the tetragonal distorted lattice in the crystallographic D0$_{22}$ phase. The Hall resistivity $varrho_{xy}$ was measured in a temperature range from 20 to 330 K. The determined skew scattering and side jump coefficients are discussed with regard to the film composition and used substrate and compared to the crystallographic and magnetic properties.
The anomalous Hall effect in metal-insulator-semiconductor structures having thin (Ga,Mn)As layers as a channel has been studied in a wide range of Mn and hole densities changed by the gate electric field. Strong and unanticipated temperature depende nce, including a change of sign, of the anomalous Hall conductance $sigma_{xy}$ has been found in samples with the highest Curie temperatures. For more disordered channels, the scaling relation between $sigma_{xy}$ and $sigma_{xx}$, similar to the one observed previously for thicker samples, is recovered.
168 - M. Glunk , J. Daeubler , W. Schoch 2009
We present magnetotransport studies performed on an extended set of (Ga,Mn)As samples at 4.2 K with longitudinal conductivities sigma_{xx} ranging from the low- to the high-conductivity regime. The anomalous Hall conductivity sigma_{xy}^(AH) is extra cted from the measured longitudinal and Hall resistivities. A transition from sigma_{xy}^(AH)=20 Omega^{-1}cm^{-1} due to the Berry phase effect in the high-conductivity regime to a scaling relation sigma_{xy}^(AH) proportional to sigma_{xx}^{1.6} for low-conductivity samples is observed. This scaling relation is consistent with a recently developed unified theory of the anomalous Hall effect in the framework of the Keldysh formalism. It turns out to be independent of crystallographic orientation, growth conditions, Mn concentration, and strain, and can therefore be considered universal for low-conductivity (Ga,Mn)As. The relation plays a crucial role when deriving values of the hole concentration from magnetotransport measurements in low-conductivity (Ga,Mn)As. In addition, the hole diffusion constants for the high-conductivity samples are determined from the measured longitudinal conductivities.
We report on the magnetic and the electronic properties of the prototype dilute magnetic semiconductor Ga$_{1-x}$Mn$_x$As using infrared (IR) spectroscopy. Trends in the ferromagnetic transition temperature $T_C$ with respect to the IR spectral weigh t are examined using a sum-rule analysis of IR conductivity spectra. We find non-monotonic behavior of trends in $T_C$ with the spectral weight to effective Mn ratio, which suggest a strong double-exchange component to the FM mechanism, and highlights the important role of impurity states and localization at the Fermi level. Spectroscopic features of the IR conductivity are tracked as they evolve with temperature, doping, annealing, As-antisite compensation, and are found only to be consistent with an Mn-induced IB scenario. Furthermore, our detailed exploration of these spectral features demonstrates that seemingly conflicting trends reported in the literature regarding a broad mid-IR resonance with respect to carrier density in Ga$_{1-x}$Mn$_x$As are in fact not contradictory. Our study thus provides a consistent experimental picture of the magnetic and electronic properties of Ga$_{1-x}$Mn$_x$As.
We have measured the magnetoresistance in a series of Ga$_{1-x}$Mn$_x$As samples with 0.033$le x le$ 0.053 for three mutually orthogonal orientations of the applied magnetic field. The spontaneous resistivity anisotropy (SRA) in these materials is ne gative (i.e. the sample resistance is higher when its magnetization is perpendicular to the measuring current than when the two are parallel) and has a magnitude on the order of 5% at temperatures near 10K and below. This stands in contrast to the results for most conventional magnetic materials where the SRA is considerably smaller in magnitude for those few cases in which a negative sign is observed. The magnitude of the SRA drops from its maximum at low temperatures to zero at T$_C$ in a manner that is consistent with mean field theory. These results should provide a significant test for emerging theories of transport in this new class of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا