ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Quadrangulated Patches For 3D Shape Processing

192   0   0.0 ( 0 )
 نشر من قبل Kripasindhu Sarkar
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a system for surface completion and inpainting of 3D shapes using generative models, learnt on local patches. Our method uses a novel encoding of height map based local patches parameterized using 3D mesh quadrangulation of the low resolution input shape. This provides us sufficient amount of local 3D patches to learn a generative model for the task of repairing moderate sized holes. Following the ideas from the recent progress in 2D inpainting, we investigated both linear dictionary based model and convolutional denoising autoencoders based model for the task for inpainting, and show our results to be better than the previous geometry based method of surface inpainting. We validate our method on both synthetic shapes and real world scans.

قيم البحث

اقرأ أيضاً

We propose a novel 3D shape parameterization by surface patches, that are oriented by 3D mesh quadrangulation of the shape. By encoding 3D surface detail on local patches, we learn a patch dictionary that identifies principal surface features of the shape. Unlike previous methods, we are able to encode surface patches of variable size as determined by the user. We propose novel methods for dictionary learning and patch reconstruction based on the query of a noisy input patch with holes. We evaluate the patch dictionary towards various applications in 3D shape inpainting, denoising and compression. Our method is able to predict missing vertices and inpaint moderately sized holes. We demonstrate a complete pipeline for reconstructing the 3D mesh from the patch encoding. We validate our shape parameterization and reconstruction methods on both synthetic shapes and real world scans. We show that our patch dictionary performs successful shape completion of complicated surface textures.
Many applications in 3D shape design and augmentation require the ability to make specific edits to an objects semantic parameters (e.g., the pose of a persons arm or the length of an airplanes wing) while preserving as much existing details as possi ble. We propose to learn a deep network that infers the semantic parameters of an input shape and then allows the user to manipulate those parameters. The network is trained jointly on shapes from an auxiliary synthetic template and unlabeled realistic models, ensuring robustness to shape variability while relieving the need to label realistic exemplars. At testing time, edits within the parameter space drive deformations to be applied to the original shape, which provides semantically-meaningful manipulation while preserving the details. This is in contrast to prior methods that either use autoencoders with a limited latent-space dimensionality, failing to preserve arbitrary detail, or drive deformations with purely-geometric controls, such as cages, losing the ability to update local part regions. Experiments with datasets of chairs, airplanes, and human bodies demonstrate that our method produces more natural edits than prior work.
Point signature, a representation describing the structural neighborhood of a point in 3D shapes, can be applied to establish correspondences between points in 3D shapes. Conventional methods apply a weight-sharing network, e.g., any kind of graph ne ural networks, across all neighborhoods to directly generate point signatures and gain the generalization ability by extensive training over a large amount of training samples from scratch. However, these methods lack the flexibility in rapidly adapting to unseen neighborhood structures and thus generalizes poorly on new point sets. In this paper, we propose a novel meta-learning based 3D point signature model, named 3Dmetapointsignature (MEPS) network, that is capable of learning robust point signatures in 3D shapes. By regarding each point signature learning process as a task, our method obtains an optimized model over the best performance on the distribution of all tasks, generating reliable signatures for new tasks, i.e., signatures of unseen point neighborhoods. Specifically, the MEPS consists of two modules: a base signature learner and a meta signature learner. During training, the base-learner is trained to perform specific signature learning tasks. In the meantime, the meta-learner is trained to update the base-learner with optimal parameters. During testing, the meta-learner that is learned with the distribution of all tasks can adaptively change parameters of the base-learner, accommodating to unseen local neighborhoods. We evaluate the MEPS model on two datasets, e.g., FAUST and TOSCA, for dense 3Dshape correspondence. Experimental results demonstrate that our method not only gains significant improvements over the baseline model and achieves state-of-the-art results, but also is capable of handling unseen 3D shapes.
Although unsupervised feature learning has demonstrated its advantages to reducing the workload of data labeling and network design in many fields, existing unsupervised 3D learning methods still cannot offer a generic network for various shape analy sis tasks with competitive performance to supervised methods. In this paper, we propose an unsupervised method for learning a generic and efficient shape encoding network for different shape analysis tasks. The key idea of our method is to jointly encode and learn shape and point features from unlabeled 3D point clouds. For this purpose, we adapt HR-Net to octree-based convolutional neural networks for jointly encoding shape and point features with fused multiresolution subnetworks and design a simple-yet-efficient Multiresolution Instance Discrimination (MID) loss for jointly learning the shape and point features. Our network takes a 3D point cloud as input and output both shape and point features. After training, the network is concatenated with simple task-specific back-end layers and fine-tuned for different shape analysis tasks. We evaluate the efficacy and generality of our method and validate our network and loss design with a set of shape analysis tasks, including shape classification, semantic shape segmentation, as well as shape registration tasks. With simple back-ends, our network demonstrates the best performance among all unsupervised methods and achieves competitive performance to supervised methods, especially in tasks with a small labeled dataset. For fine-grained shape segmentation, our method even surpasses existing supervised methods by a large margin.
We propose a novel technique for producing high-quality 3D models that match a given target object image or scan. Our method is based on retrieving an existing shape from a database of 3D models and then deforming its parts to match the target shape. Unlike previous approaches that independently focus on either shape retrieval or deformation, we propose a joint learning procedure that simultaneously trains the neural deformation module along with the embedding space used by the retrieval module. This enables our network to learn a deformation-aware embedding space, so that retrieved models are more amenable to match the target after an appropriate deformation. In fact, we use the embedding space to guide the shape pairs used to train the deformation module, so that it invests its capacity in learning deformations between meaningful shape pairs. Furthermore, our novel part-aware deformation module can work with inconsistent and diverse part-structures on the source shapes. We demonstrate the benefits of our joint training not only on our novel framework, but also on other state-of-the-art neural deformation modules proposed in recent years. Lastly, we also show that our jointly-trained method outperforms various non-joint baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا