ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Embodied Semantics via Music and Dance Semiotic Correlations

338   0   0.0 ( 0 )
 نشر من قبل Francisco Raposo
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Music semantics is embodied, in the sense that meaning is biologically mediated by and grounded in the human body and brain. This embodied cognition perspective also explains why music structures modulate kinetic and somatosensory perception. We leverage this aspect of cognition, by considering dance as a proxy for music perception, in a statistical computational model that learns semiotic correlations between music audio and dance video. We evaluate the ability of this model to effectively capture underlying semantics in a cross-modal retrieval task. Quantitative results, validated with statistical significance testing, strengthen the body of evidence for embodied cognition in music and show the model can recommend music audio for dance video queries and vice-versa.

قيم البحث

اقرأ أيضاً

Embodied cognition states that semantics is encoded in the brain as firing patterns of neural circuits, which are learned according to the statistical structure of human multimodal experience. However, each human brain is idiosyncratically biased, ac cording to its subjective experience history, making this biological semantic machinery noisy with respect to the overall semantics inherent to media artifacts, such as music and language excerpts. We propose to represent shared semantics using low-dimensional vector embeddings by jointly modeling several brains from human subjects. We show these unsupervised efficient representations outperform the original high-dimensional fMRI voxel spaces in proxy music genre and language topic classification tasks. We further show that joint modeling of several subjects increases the semantic richness of the learned latent vector spaces.
In this paper, we introduce Foley Music, a system that can synthesize plausible music for a silent video clip about people playing musical instruments. We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings. We then formulate music generation from videos as a motion-to-MIDI translation problem. We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements. The MIDI event can then be converted to realistic music using an off-the-shelf music synthesizer tool. We demonstrate the effectiveness of our models on videos containing a variety of music performances. Experimental results show that our model outperforms several existing systems in generating music that is pleasant to listen to. More importantly, the MIDI representations are fully interpretable and transparent, thus enabling us to perform music editing flexibly. We encourage the readers to watch the demo video with audio turned on to experience the results.
We present a learning-based approach with pose perceptual loss for automatic music video generation. Our method can produce a realistic dance video that conforms to the beats and rhymes of almost any given music. To achieve this, we firstly generate a human skeleton sequence from music and then apply the learned pose-to-appearance mapping to generate the final video. In the stage of generating skeleton sequences, we utilize two discriminators to capture different aspects of the sequence and propose a novel pose perceptual loss to produce natural dances. Besides, we also provide a new cross-modal evaluation to evaluate the dance quality, which is able to estimate the similarity between two modalities of music and dance. Finally, a user study is conducted to demonstrate that dance video synthesized by the presented approach produces surprisingly realistic results. The results are shown in the supplementary video at https://youtu.be/0rMuFMZa_K4
Modeling of music audio semantics has been previously tackled through learning of mappings from audio data to high-level tags or latent unsupervised spaces. The resulting semantic spaces are theoretically limited, either because the chosen high-level tags do not cover all of music semantics or because audio data itself is not enough to determine music semantics. In this paper, we propose a generic framework for semantics modeling that focuses on the perception of the listener, through EEG data, in addition to audio data. We implement this framework using a novel end-to-end 2-view Neural Network (NN) architecture and a Deep Canonical Correlation Analysis (DCCA) loss function that forces the semantic embedding spaces of both views to be maximally correlated. We also detail how the EEG dataset was collected and use it to train our proposed model. We evaluate the learned semantic space in a transfer learning context, by using it as an audio feature extractor in an independent dataset and proxy task: music audio-lyrics cross-modal retrieval. We show that our embedding model outperforms Spotify features and performs comparably to a state-of-the-art embedding model that was trained on 700 times more data. We further discuss improvements to the model that are likely to improve its performance.
Synthesize human motions from music, i.e., music to dance, is appealing and attracts lots of research interests in recent years. It is challenging due to not only the requirement of realistic and complex human motions for dance, but more importantly, the synthesized motions should be consistent with the style, rhythm and melody of the music. In this paper, we propose a novel autoregressive generative model, DanceNet, to take the style, rhythm and melody of music as the control signals to generate 3D dance motions with high realism and diversity. To boost the performance of our proposed model, we capture several synchronized music-dance pairs by professional dancers, and build a high-quality music-dance pair dataset. Experiments have demonstrated that the proposed method can achieve the state-of-the-art results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا