ترغب بنشر مسار تعليمي؟ اضغط هنا

High Throughput and Low Cost LDPC Reconciliation for Quantum Key Distribution

72   0   0.0 ( 0 )
 نشر من قبل Qiong Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reconciliation is a crucial procedure in post-processing of Quantum Key Distribution (QKD), which is used for correcting the error bits in sifted key strings. Although most studies about reconciliation of QKD focus on how to improve the efficiency, throughput optimizations have become the highlight in high-speed QKD systems. Many researchers adpot high cost GPU implementations to improve the throughput. In this paper, an alternative high throughput and efficiency solution implemented in low cost CPU is proposed. The main contribution of the research is the design of a quantized LDPC decoder including improved RCBP-based check node processing and saturation-oriented variable node processing. Experiment results show that the throughput up to 60Mbps is achieved using the bi-directional approach with reconciliation efficiency approaching to 1.1, which is the optimal combination of throughput and efficiency in Discrete-Variable QKD (DV-QKD). Meanwhile, the performance remains stable when Quantum Bit Error Rate (QBER) varies from 1% to 8%.



قيم البحث

اقرأ أيضاً

Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate of a QKD system, most studies on reconciliation primarily focused on improving the efficiency. Wit h the increasing performance of QKD systems, the research priority has shifted to the improvement of both throughput and efficiency. In this paper, we propose a high performance solution of Cascade reconciliation, including a high-throughput-oriented framework and an integrated-optimization-oriented scheme. Benefiting from the fully utilizing computation and storage resources, effectively dealing with communication delays, the integrated-optimization-oriented parameters setting, etc., an excellent overall performance was achieved. Experimental results showed that, the throughput of up to 570Mbps with an efficiency of 1.038 was achieved, which, to our knowledge, was more than four times faster than any throughput previously demonstrated. Furthermore, throughputs on real data sets were capable of reaching up to 86Mbps even on embedded platforms. Additionally, our solution offers good adaptability to the fluctuating communication delay and quantum bit error rate (QBER). Based on our study, low performance (i.e. low power-consumption and cost-effective) CPU platforms will be sufficient for reconciliation in the existing and near-term QKD systems.
In the practical continuous-variable quantum key distribution (CV-QKD) system, the postprocessing process, particularly the error correction part, significantly impacts the system performance. Multi-edge type low-density parity-check (MET-LDPC) codes are suitable for CV-QKD systems because of their Shannon-limit-approaching performance at a low signal-to-noise ratio (SNR). However, the process of designing a low-rate MET-LDPC code with good performance is extremely complicated. Thus, we introduce Raptor-like LDPC (RL-LDPC) codes into the CV-QKD system, exhibiting both the rate compatible property of the Raptor code and capacity-approaching performance of MET-LDPC codes. Moreover, this technique can significantly reduce the cost of constructing a new matrix. We design the RL-LDPC matrix with a code rate of 0.02 and easily and effectively adjust this rate from 0.016 to 0.034. Simulation results show that we can achieve more than 98% reconciliation efficiency in a range of code rate variation using only one RL-LDPC code that can support high-speed decoding with an SNR less than -16.45 dB. This code allows the system to maintain a high key extraction rate under various SNRs, paving the way for practical applications of CV-QKD systems with different transmission distances.
Information reconciliation (IR) corrects the errors in sifted keys and ensures the correctness of quantum key distribution (QKD) systems. Polar codes-based IR schemes can achieve high reconciliation efficiency, however, the incidental high frame erro r rate decreases the secure key rate of QKD systems. In this article, we propose a Shannon-limit approached (SLA) IR scheme, which mainly contains two phases: the forward reconciliation phase and the acknowledgment reconciliation phase. In the forward reconciliation phase, the sifted key is divided into sub-blocks and performed with the improved block checked successive cancellation list (BC-SCL) decoder of polar codes. Afterwards, only the failure corrected sub-blocks perform the additional acknowledgment reconciliation phase, which decreases the frame error rate of the SLA IR scheme. The experimental results show that the overall failure probability of SLA IR scheme is decreased to $10^{-8}$ and the efficiency is improved to 1.091 with the IR block length of 128Mb. Furthermore, the efficiency of the proposed SLA IR scheme is 1.055, approached to Shannon-limit, when quantum bit error rate is 0.02 and the input scale of 1Gb, which is hundred times larger than the state-of-art implemented polar codes-based IR schemes.
We suggest a new protocol for the information reconciliation stage of quantum key distribution based on polar codes. The suggested approach is based on the blind technique, which is proved to be useful for low-density parity-check (LDPC) codes. We sh ow that the suggested protocol outperforms the blind reconciliation with LDPC codes, especially when there are high fluctuations in quantum bit error rate (QBER).
Information reconciliation is crucial for continuous-variable quantum key distribution (CV-QKD) because its performance affects the secret key rate and maximal secure transmission distance. Fixed-rate error correction codes limit the potential applic ations of the CV-QKD because of the difficulty of optimizing such codes for different low SNRs. In this paper, we propose a rateless reconciliation protocol combined multidimensional scheme with Raptor codes that not only maintains the rateless property but also achieves high efficiency in different SNRs using just one degree distribution. It significantly decreases the complexity of optimization and increases the robustness of the system. Using this protocol, the CV-QKD system can operate with the optimal modulation variance which maximizes the secret key rate. Simulation results show that the proposed protocol can achieve reconciliation efficiency of more than 95% within the range of SNR from -20 dB to 0 dB. It also shows that we can obtain a high secret key rate at arbitrary distances in a certain range and achieve a secret key rate of about 5*10^(-4) bits/pulse at a maximum distance of 132 km (corresponding SNR is -20dB) that is higher than previous works. The proposed protocol can maintain high efficient key extraction under the wide range of SNRs and paves the way toward the practical application of CV-QKD systems in flexible scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا