ﻻ يوجد ملخص باللغة العربية
We suggest a new protocol for the information reconciliation stage of quantum key distribution based on polar codes. The suggested approach is based on the blind technique, which is proved to be useful for low-density parity-check (LDPC) codes. We show that the suggested protocol outperforms the blind reconciliation with LDPC codes, especially when there are high fluctuations in quantum bit error rate (QBER).
Quantum key distribution (QKD) offers a practical solution for secure communication between two distinct parties via a quantum channel and an authentic public channel. In this work, we consider different approaches to the quantum bit error rate (QBER
Information reconciliation (IR) corrects the errors in sifted keys and ensures the correctness of quantum key distribution (QKD) systems. Polar codes-based IR schemes can achieve high reconciliation efficiency, however, the incidental high frame erro
Quantum key distribution (QKD) is a promising technique for secure communication based on quantum mechanical principles. To improve the secure key rate of a QKD system, most studies on reconciliation primarily focused on improving the efficiency. Wit
In the practical continuous-variable quantum key distribution (CV-QKD) system, the postprocessing process, particularly the error correction part, significantly impacts the system performance. Multi-edge type low-density parity-check (MET-LDPC) codes
Information reconciliation is crucial for continuous-variable quantum key distribution (CV-QKD) because its performance affects the secret key rate and maximal secure transmission distance. Fixed-rate error correction codes limit the potential applic