ﻻ يوجد ملخص باللغة العربية
We consider the linear second order PDOs $$ mathscr{L} = mathscr{L}_0 - partial_t : = sum_{i,j =1}^N partial_{x_i}(a_{i,j} partial_{x_j} ) - sum_{j=i}^N b_j partial_{x_j} - partial _t,$$and assume that $mathscr{L}_0$ has nonnegative characteristic form and satisfies the Olev{i}nik--Radkeviv{c} rank hypoellipticity condition. These hypotheses allow the construction of Perron-Wiener solutions of the Dirichlet problems for $mathscr{L}$ and $mathscr{L}_0$ on bounded open subsets of $mathbb R^{N+1}$ and of $mathbb R^{N}$, respectively. Our main result is the following Tikhonov-type theorem: Let $mathcal{O}:= Omega times ]0, T[$ be a bounded cylindrical domain of $mathbb R^{N+1}$, $Omega subset mathbb R^{N},$ $x_0 in partial Omega$ and $0 < t_0 < T.$ Then $z_0 = (x_0, t_0) in partial mathcal{O}$ is $mathscr{L}$-regular for $mathcal{O}$ if and only if $x_0$ is $mathscr{L}_0$-regular for $Omega$. As an application, we derive a boundary regularity criterion for degenerate Ornstein--Uhlenbeck operators.
We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron-Wiener solution and we provide a sufficient
We consider the Calder`on problem in an infinite cylindrical domain, whose cross section is a bounded domain of the plane. We prove log-log stability in the determination of the isotropic periodic conductivity coefficient from partial Dirichlet data
We study the inverse problem of determining the magnetic field and the electric potential entering the Schrodinger equation in an infinite 3D cylindrical domain, by Dirichlet-to-Neumann map. The cylindrical domain we consider is a closed waveguide in
We shall discuss the inhomogeneous Dirichlet problem for: $f(x,u, Du, D^2u) = psi(x)$ where $f$ is a natural differential operator, with a restricted domain $F$, on a manifold $X$. By natural we mean operators that arise intrinsically from a given ge
In this paper, we establish compactness and existence results to a Branson-Paneitz type problem on a bounded domain of R^n with Navier boundary condition.