ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Dirichlet Problem for hypoelliptic evolution equations: Perron-Wiener solution and a cone-type criterion

102   0   0.0 ( 0 )
 نشر من قبل Alessia Elisabetta Kogoj
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Alessia E. Kogoj




اسأل ChatGPT حول البحث

We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron-Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan.

قيم البحث

اقرأ أيضاً

By an easy trick taken from caloric polynomial theory we construct a family $mathscr{B}$ of $almost regular$ domains for the caloric Dirichlet problem. $mathscr{B}$ is a basis of the Euclidean topology. This allows to build, with a basically elementa ry procedure, the Perron solution to the caloric Dirichlet problem on every bounded domain.
We establish a necessary and sufficient condition for a boundary point to be regular for the Dirichlet problem related to a class of Kolmogorov-type equations. Our criterion is inspired by two classical criteria for the heat equation: the Evans-Garie pys Wiener test, and a criterion by Landis expressed in terms of a series of caloric potentials.
A short account of recent existence and multiplicity theorems on the Dirichlet problem for an elliptic equation with $(p,q)$-Laplacian in a bounded domain is performed. Both eigenvalue problems and different types of perturbation terms are briefly di scussed. Special attention is paid to possibly coercive, resonant, subcritical, critical, or asymmetric right-hand sides.
93 - Alessia E. Kogoj 2019
We consider the linear second order PDOs $$ mathscr{L} = mathscr{L}_0 - partial_t : = sum_{i,j =1}^N partial_{x_i}(a_{i,j} partial_{x_j} ) - sum_{j=i}^N b_j partial_{x_j} - partial _t,$$and assume that $mathscr{L}_0$ has nonnegative characteristic fo rm and satisfies the Olev{i}nik--Radkeviv{c} rank hypoellipticity condition. These hypotheses allow the construction of Perron-Wiener solutions of the Dirichlet problems for $mathscr{L}$ and $mathscr{L}_0$ on bounded open subsets of $mathbb R^{N+1}$ and of $mathbb R^{N}$, respectively. Our main result is the following Tikhonov-type theorem: Let $mathcal{O}:= Omega times ]0, T[$ be a bounded cylindrical domain of $mathbb R^{N+1}$, $Omega subset mathbb R^{N},$ $x_0 in partial Omega$ and $0 < t_0 < T.$ Then $z_0 = (x_0, t_0) in partial mathcal{O}$ is $mathscr{L}$-regular for $mathcal{O}$ if and only if $x_0$ is $mathscr{L}_0$-regular for $Omega$. As an application, we derive a boundary regularity criterion for degenerate Ornstein--Uhlenbeck operators.
147 - Daoyin He 2015
In this paper, we are concerned with the global Cauchy problem for the semilinear generalized Tricomi equation $partial_t^2 u-t^m Delta u=|u|^p$ with initial data $(u(0,cdot), partial_t u(0,cdot))= (u_0, u_1)$, where $tgeq 0$, $xin{mathbb R}^n$ ($nge 3$), $minmathbb N$, $p>1$, and $u_iin C_0^{infty}({mathbb R}^n)$ ($i=0,1$). We show that there exists a critical exponent $p_{text{crit}}(m,n)>1$ such that the solution $u$, in general, blows up in finite time when $1<p<p_{text{crit}}(m,n)$. We further show that there exists a conformal exponent $p_{text{conf}}(m,n)> p_{text{crit}}(m,n)$ such that the solution $u$ exists globally when $p>p_{text{conf}}(m,n)$ provided that the initial data is small enough. In case $p_{text{crit}}(m,n)<pleq p_{text{conf}}(m,n)$, we will establish global existence of small data solutions $u$ in a subsequent paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا