ﻻ يوجد ملخص باللغة العربية
There is a Turing computable embedding $Phi$ of directed graphs $A$ in undirected graphs. Moreover, there is a fixed tuple of formulas that give a uniform interpretation; i.e., for all directed graphs $A$, these formulas interpret $A$ in $Phi(G)$. It follows that A is Medvedev reducible to $Phi(A)$ uniformly; i.e., there is a fixed Turing operator that serves for all $A$. We observe that there is a graph $G$ that is not Medvedev reducible to any linear ordering. Hence, $G$ is not effectively interpreted in any linear ordering. Similarly, there is a graph that is not interpreted in any linear ordering using computable $Sigma_2$ formulas. Any graph can be interpreted in a linear ordering using computable $Sigma_3$ formulas. Friedman and Stanley gave a Turing computable embedding L of directed graphs in linear orderings. We show that there is no fixed tuple of $L_{omega_1,omega}$ formulas that, for all $G$, interpret the input graph $G$ in the output linear ordering $L(G)$. Harrison-Trainor and Montalban have also shown this, by a quite different proof.
An algebraic linear ordering is a component of the initial solution of a first-order recursion scheme over the continuous categorical algebra of countable linear orderings equipped with the sum operation and the constant 1. Due to a general Mezei-Wri
We show that, for every linear ordering of $[2]^n$, there is a large subcube on which the ordering is lexicographic. We use this to deduce that every long sequence contains a long monotone subsequence supported on an affine cube. More generally, we
Every real is computable from a Martin-Loef random real. This well known result in algorithmic randomness was proved by Kucera and Gacs. In this survey article we discuss various approaches to the problem of coding an arbitrary real into a Martin-Loe
This article discusses some recent trends in Ramsey theory on infinite structures. Trees and their Ramsey theory have been vital to these investigations. The main ideas behind the authors recent method of trees with coding nodes are presented, showin
Let G be a definably compact group in an o-minimal expansion of a real closed field. We prove that if dim(G X) < dim G for some definable X subset of G then X contains a torsion point of G. Along the way we develop a general theory for so-called G-li