ﻻ يوجد ملخص باللغة العربية
Every real is computable from a Martin-Loef random real. This well known result in algorithmic randomness was proved by Kucera and Gacs. In this survey article we discuss various approaches to the problem of coding an arbitrary real into a Martin-Loef random real,and also describe new results concerning optimal methods of coding. We start with a simple presentation of the original methods of Kucera and Gacs and then rigorously demonstrate their limitations in terms of the size of the redundancy in the codes that they produce. Armed with a deeper understanding of these methods, we then proceed to motivate and illustrate aspects of the new coding method that was recently introduced by Barmpalias and Lewis-Pye and which achieves optimal logarithmic redundancy, an exponential improvement over the original redundancy bounds.
This article discusses some recent trends in Ramsey theory on infinite structures. Trees and their Ramsey theory have been vital to these investigations. The main ideas behind the authors recent method of trees with coding nodes are presented, showin
We realize the Jiang-Su algebra, all UHF algebras, and the hyperfinite II$_{1}$ factor as Fraisse limits of suitable classes of structures. Moreover by means of Fraisse theory we provide new examples of AF algebras with strong homogeneity properties.
There is a Turing computable embedding $Phi$ of directed graphs $A$ in undirected graphs. Moreover, there is a fixed tuple of formulas that give a uniform interpretation; i.e., for all directed graphs $A$, these formulas interpret $A$ in $Phi(G)$. It
It has been established that when the gradient coding problem is distributed among $n$ servers, the computation load (number of stored data partitions) of each worker is at least $s+1$ in order to resists $s$ stragglers. This scheme incurs a large ov
The general theory developed by Ben Yaacov for metric structures provides Fraisse limits which are approximately ultrahomogeneous. We show here that this result can be strengthened in the case of relational metric structures. We give an extra conditi