ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-driven Neural Architecture Learning For Financial Time-series Forecasting

120   0   0.0 ( 0 )
 نشر من قبل Dat Thanh Tran
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Forecasting based on financial time-series is a challenging task since most real-world data exhibits nonstationary property and nonlinear dependencies. In addition, different data modalities often embed different nonlinear relationships which are difficult to capture by human-designed models. To tackle the supervised learning task in financial time-series prediction, we propose the application of a recently formulated algorithm that adaptively learns a mapping function, realized by a heterogeneous neural architecture composing of Generalized Operational Perceptron, given a set of labeled data. With a modified objective function, the proposed algorithm can accommodate the frequently observed imbalanced data distribution problem. Experiments on a large-scale Limit Order Book dataset demonstrate that the proposed algorithm outperforms related algorithms, including tensor-based methods which have access to a broader set of input information.



قيم البحث

اقرأ أيضاً

In this work, we address time-series forecasting as a computer vision task. We capture input data as an image and train a model to produce the subsequent image. This approach results in predicting distributions as opposed to pointwise values. To asse ss the robustness and quality of our approach, we examine various datasets and multiple evaluation metrics. Our experiments show that our forecasting tool is effective for cyclic data but somewhat less for irregular data such as stock prices. Importantly, when using image-based evaluation metrics, we find our method to outperform various baselines, including ARIMA, and a numerical variation of our deep learning approach.
Time series forecasting is a crucial component of many important applications, ranging from forecasting the stock markets to energy load prediction. The high-dimensionality, velocity and variety of the data collected in these applications pose signif icant and unique challenges that must be carefully addressed for each of them. In this work, a novel Temporal Logistic Neural Bag-of-Features approach, that can be used to tackle these challenges, is proposed. The proposed method can be effectively combined with deep neural networks, leading to powerful deep learning models for time series analysis. However, combining existing BoF formulations with deep feature extractors pose significant challenges: the distribution of the input features is not stationary, tuning the hyper-parameters of the model can be especially difficult and the normalizations involved in the BoF model can cause significant instabilities during the training process. The proposed method is capable of overcoming these limitations by a employing a novel adaptive scaling mechanism and replacing the classical Gaussian-based density estimation involved in the regular BoF model with a logistic kernel. The effectiveness of the proposed approach is demonstrated using extensive experiments on a large-scale financial time series dataset that consists of more than 4 million limit orders.
146 - Samit Bhanja , Abhishek Das 2018
For the last few years it has been observed that the Deep Neural Networks (DNNs) has achieved an excellent success in image classification, speech recognition. But DNNs are suffer great deal of challenges for time series forecasting because most of t he time series data are nonlinear in nature and highly dynamic in behaviour. The time series forecasting has a great impact on our socio-economic environment. Hence, to deal with these challenges its need to be redefined the DNN model and keeping this in mind, data pre-processing, network architecture and network parameters are need to be consider before feeding the data into DNN models. Data normalization is the basic data pre-processing technique form which learning is to be done. The effectiveness of time series forecasting is heavily depend on the data normalization technique. In this paper, different normalization methods are used on time series data before feeding the data into the DNN model and we try to find out the impact of each normalization technique on DNN to forecast the time series. Here the Deep Recurrent Neural Network (DRNN) is used to predict the closing index of Bombay Stock Exchange (BSE) and New York Stock Exchange (NYSE) by using BSE and NYSE time series data.
Statistical methods such as the Box-Jenkins method for time-series forecasting have been prominent since their development in 1970. Many researchers rely on such models as they can be efficiently estimated and also provide interpretability. However, advances in machine learning research indicate that neural networks can be powerful data modeling techniques, as they can give higher accuracy for a plethora of learning problems and datasets. In the past, they have been tried on time-series forecasting as well, but their overall results have not been significantly better than the statistical models especially for intermediate length times series data. Their modeling capacities are limited in cases where enough data may not be available to estimate the large number of parameters that these non-linear models require. This paper presents an easy to implement data augmentation method to significantly improve the performance of such networks. Our method, Augmented-Neural-Network, which involves using forecasts from statistical models, can help unlock the power of neural networks on intermediate length time-series and produces competitive results. It shows that data augmentation, when paired with Automated Machine Learning techniques such as Neural Architecture Search, can help to find the best neural architecture for a given time-series. Using the combination of these, demonstrates significant enhancement in the forecasting accuracy of three neural network-based models for a COVID-19 dataset, with a maximum improvement in forecasting accuracy by 21.41%, 24.29%, and 16.42%, respectively, over the neural networks that do not use augmented data.
Financial market analysis, especially the prediction of movements of stock prices, is a challenging problem. The nature of financial time-series data, being non-stationary and nonlinear, is the main cause of these challenges. Deep learning models hav e led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data. Although the prediction performance is the main goal of such models, dealing with ultra high-frequency data sets restrictions in terms of the number of model parameters and its inference speed. The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting. In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا