ترغب بنشر مسار تعليمي؟ اضغط هنا

Illuminating the dark universe with a very high density galaxy redshift survey over a wide area

94   0   0.0 ( 0 )
 نشر من قبل Yun Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yun Wang




اسأل ChatGPT حول البحث

The nature of dark energy remains a profound mystery 20 years after the discovery of cosmic acceleration. A very high number density galaxy redshift survey over a wide area (HD GRS Wide) spanning the redshift range of 0.5<z<4 using the same tracer, carried out using massively parallel wide field multi-object slit spectroscopy from space, will provide definitive dark energy measurements with minimal observational systematics by design. The HD GRS Wide will illuminate the nature of dark energy, and lead to revolutionary advances in particle physics and cosmology. It will also trace the cosmic web of dark matter and provide key insight into large-scale structure in the Universe. The required observational facility can be established as part of the probe portfolio by NASA within the next decade.



قيم البحث

اقرأ أيضاً

Results are presented from NIR spectroscopy of a sample of BzK-selected, massive star-forming galaxies (sBzKs) at 1.5<z<2.3 that were obtained with OHS/CISCO at Subaru and with SINFONI at VLT. Among the 28 sBzKs observed, Ha emission was detected in 14 objects, and for 11 of them the [NII]6583 was also measured. Multiwavelength photometry was also used to derive stellar masses and extinction parameters, whereas Ha and [NII] have allowed us to estimate SFR, metallicities, ionization mechanisms, and dynamical masses. In order to enforce agreement between SFRs from Ha with those derived from rest-frame UV and MIR, additional obscuration for the emission lines (that originate in HII regions) was required compared to the extinction derived from the slope of the UV continuum. We have also derived the stellar mass-metallicity relation, as well as the relation between stellar mass and specific SFR, and compared them to the results in other studies. At a given stellar mass, the sBzKs appear to have been already enriched to metallicities close to those of local star-forming galaxies of similar mass. The sBzKs presented here tend to have higher metallicities compared to those of UV-selected galaxies, indicating that NIR selected galaxies tend to be a chemically more evolved population. The sBzKs show specific SFRs that are systematically higher, by up to ~2 orders of magnitude, compared to those of local galaxies of the same mass. The empirical correlations between stellar mass and metallicity, and stellar mass and specific SFR are then compared with those of population synthesis models constructed either with the simple closed-box assumption, or within an infall scenario. Within the assumptions that are built-in such models, it appears that a short timescale for the star-formation (~100 Myr) and large initial gas mass appear to be required if one wants to reproduce both relations simultaneously.
79 - L. Guzzo , J. Bel , D. Bianchi 2018
Galaxy redshift surveys are one of the pillars of the current standard cosmological model and remain a key tool in the experimental effort to understand the origin of cosmic acceleration. To this end, the next generation of surveys aim at achieving s ub-percent precision in the measurement of the equation of state of dark energy $w(z)$ and the growth rate of structure $f(z)$. This however requires comparable control over systematic errors, stressing the need for improved modelling methods. In this contribution we review at the introductory level some highlights of the work done in this direction by the {it Darklight} project. Supported by an ERC Advanced Grant, {it Darklight} developed novel techniques for clustering analysis, which were tested through numerical simulations before being finally applied to galaxy data as in particular those of the recently completed VIPERS redshift survey. We focus in particular on: (a) advances on estimating the growth rate of structure from redshift-space distortions; (b) parameter estimation through global Bayesian reconstruction of the density field from survey data; (c) impact of massive neutrinos on large-scale structure measurements. Overall, {it Darklight} has contributed to paving the way for forthcoming high-precision experiments, such as {it Euclid}, the next ESA cosmological mission.
The detection of Pop III supernovae could directly probe the primordial IMF for the first time, unveiling the properties of the first galaxies, early chemical enrichment and reionization, and the seeds of supermassive black holes. Growing evidence th at some Pop III stars were less massive than 100 solar masses may complicate prospects for their detection, because even though they would have been more plentiful they would have died as core-collapse supernovae, with far less luminosity than pair-instability explosions. This picture greatly improves if the SN shock collides with a dense circumstellar shell ejected during a prior violent LBV type eruption. Such collisions can turn even dim SNe into extremely bright ones whose luminosities can rival those of pair-instability SNe. We present simulations of Pop III Type IIn SN light curves and spectra performed with the Los Alamos RAGE and SPECTRUM codes. Taking into account Lyman-alpha absorption in the early universe and cosmological redshifting, we find that 40 solar mass Pop III Type IIn SNe will be visible out to z ~ 20 with JWST and out to z ~ 7 with WFIRST. Thus, even low mass Pop III SNe can be used to probe the primeval universe.
183 - Carlos De Breuck 2010
We present results from a comprehensive imaging survey of 70 radio galaxies at redshifts 1<z<5.2 using all three cameras onboard the Spitzer Space Telescope. The resulting spectral energy distributions unambiguously show a stellar population in 46 so urces and hot dust emission associated with the active nucleus in 59. Using a new restframe S_3um/S_1.6um versus S_um/S_3um criterion, we identify 42 sources where the restframe 1.6um emission from the stellar population can be measured. For these radio galaxies, the median stellar mass is high, 2x10^11 M_sun, and remarkably constant within the range 1<z<3. At z>3, there is tentative evidence for a factor of two decrease in stellar mass. This suggests that radio galaxies have assembled the bulk of their stellar mass by z~3, but confirmation by more detailed decomposition of stellar and AGN emission is needed. The restframe 500 MHz radio luminosities are only marginally correlated with stellar mass but are strongly correlated with the restframe 5um hot dust luminosity. This suggests that the radio galaxies have a large range of Eddington ratios. We also present new Very Large Array 4.86 and 8.46 GHz imaging of 14 radio galaxies and find that radio core dominance --- an indicator of jet orientation --- is strongly correlated with hot dust luminosity. While all of our targets were selected as narrow-lined, type 2 AGNs, this result can be understood in the context of orientation-dependent models if there is a continuous distribution of orientations from obscured type 2 to unobscured type 1 AGNs rather than a clear dichotomy. Finally, four radio galaxies have nearby (<6) companions whose mid-IR colors are suggestive of their being AGNs. This may indicate an association between radio galaxy activity and major mergers.
In this paper we study the consequences of relaxing the hypothesis of the pressureless nature of the dark matter component when determining constraints on dark energy. To this aim we consider simple generalized dark matter models with constant equati on of state parameter. We find that present-day low-redshift probes (type-Ia supernovae and baryonic acoustic oscillations) lead to a complete degeneracy between the dark energy and the dark matter sectors. However, adding the cosmic microwave background (CMB) high-redshift probe restores constraints similar to those on the standard $Lambda$CDM model. We then examine the anticipated constraints from the galaxy clustering probe of the future Euclid survey on the same class of models, using a Fisher forecast estimation. We show that the Euclid survey allows us to break the degeneracy between the dark sectors, although the constraints on dark energy are much weaker than with standard dark matter. The use of CMB in combination allows us to restore the high precision on the dark energy sector constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا