ترغب بنشر مسار تعليمي؟ اضغط هنا

WFIRST: Enhancing Transient Science and Multi-Messenger Astronomy

115   0   0.0 ( 0 )
 نشر من قبل Ryan J. Foley
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrophysical transients have been observed for millennia and have shaped our most basic assumptions about the Universe. In the last century, systematic searches have grown from detecting handfuls of transients per year to over 7000 in 2018 alone. As these searches have matured, we have discovered both large samples of normal classes and new, rare classes. Recently, a transient was the first object observed in both gravitational waves and light. Ground-based observatories, including LSST, will discover thousands of transients in the optical, but these facilities will not provide the high-fidelity near-infrared (NIR) photometry and high-resolution imaging of a space-based observatory. WFIRST can fill this gap. With its survey designed to measure the expansion history of the Universe with Type Ia supernovae, WFIRST will also discover and monitor thousands of other transients in the NIR, revealing the physics for these high-energy events. Small-scale GO programs, either as a supplement to the planned survey or as specific target-of-opportunity observations, would significantly expand the scope of transient science that can be studied with WFIRST.

قيم البحث

اقرأ أيضاً

At the time of defining the science objectives of the INTernational Gamma-Ray Astrophysics Laboratory (INTEGRAL), such a rapid and spectacular development of multi-messenger astronomy could not have been predicted, with new impulsive phenomena becomi ng accessible through different channels. Neutrino telescopes have routinely detected energetic neutrino events coming from unknown cosmic sources since 2013. Gravitational wave detectors opened a novel window on the sky in 2015 with the detection of the merging of two black holes and in 2017 with the merging of two neutron stars, followed by signals in the full electromagnetic range. Finally, since 2007, radio telescopes detected extremely intense and short burst of radio waves, known as Fast Radio Bursts (FRBs) whose origin is for most cases extragalactic, but enigmatic. The exceptionally robust and versatile design of the INTEGRAL mission has allowed researchers to exploit data collected not only with the pointed instruments, but also with the active cosmic-ray shields of the main instruments to detect impulses of gamma-rays in coincidence with unpredictable phenomena. The full-sky coverage, mostly unocculted by the Earth, the large effective area, the stable background, and the high duty cycle (85%) put INTEGRAL in a privileged position to give a major contribution to multi-messenger astronomy. In this review, we describe how INTEGRAL has provided upper limits on the gamma-ray emission from black-hole binary mergers, detected a short gamma-ray burst in coincidence with a binary neutron star merger, contributed to define the spectral energy distribution of a blazar associated with a neutrino event, set upper limits on impulsive and steady gamma-ray emission from cosmological FRBs, and detected a magnetar flare associated with fast radio bursting emission.
363 - Manuela Vecchi 2011
The ANTARES Collaboration has completed in 2008 the deployment of what is currently the largest high energy neutrino detector in the Northern hemisphere. The search for cosmic neutrinos in the energy range between tens of GeV and tens of PeV is perfo rmed by means of a three dimensional array of photomultiplier tubes (PMTs), arranged on 12 vertical structures (strings) located in the Mediterranean Sea at a depth of about 2500 meters. The detection principle relies on the identification of the Cherenkov light produced as ultra-relativistic muons propagate in water. The main goal of the detector is the search for point-like sources of cosmic neutrinos from both Galactic and extra-Galactic sources. Besides the search for point sources, other analysis topics are strongly pursued and will be described in the following.
We explore opportunities for multi-messenger astronomy using gravitational waves (GWs) and prompt, transient low-frequency radio emission to study highly energetic astrophysical events. We review the literature on possible sources of correlated emiss ion of gravitational waves and radio transients, highlighting proposed mechanisms that lead to a short-duration, high-flux radio pulse originating from the merger of two neutron stars or from a superconducting cosmic string cusp. We discuss the detection prospects for each of these mechanisms by low-frequency dipole array instruments such as LWA1, LOFAR and MWA. We find that a broad range of models may be tested by searching for radio pulses that, when de-dispersed, are temporally and spatially coincident with a LIGO/Virgo GW trigger within a $usim 30$ second time window and $usim 200 mendash 500 punits{deg}^{2}$ sky region. We consider various possible observing strategies and discuss their advantages and disadvantages. Uniquely, for low-frequency radio arrays, dispersion can delay the radio pulse until after low-latency GW data analysis has identified and reported an event candidate, enabling a emph{prompt} radio signal to be captured by a deliberately targeted beam. If neutron star mergers do have detectable prompt radio emissions, a coincident search with the GW detector network and low-frequency radio arrays could increase the LIGO/Virgo effective search volume by up to a factor of $usim 2$. For some models, we also map the parameter space that may be constrained by non-detections.
The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extr emely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.
The Cherenkov Telescope Array (CTA) will be the major global observatory for VHE gamma-ray astronomy over the next decade and beyond. It will be an explorer of the extreme universe, with a broad scientific potential: from understanding the role of re lativistic cosmic particles, to the search for dark matter. Covering photon energies from 20 GeV to 300 TeV, and with an angular resolution unique in the field, of about 1 arc min, CTA will improve on all aspects of the performance with respect to current instruments, surveying the high energy sky hundreds of times faster than previous TeV telescopes, and with a much deeper view. The very large collection area of CTA makes it an important probe of transient phenomena. The first CTA telescope has just been inaugurated in the Canary Islands, Spain, and as more telescopes are added in the coming years, scientific operation will start. It is evident that CTA will have important synergies with many of the new generation astronomical and astroparticle observatories. In this talk we will review the CTA science case from the point of view of its synergies with other instruments and facilities, highlighting the CTA needs in terms of external data, as well as the opportunities and strategies for cooperation to achieve the basic CTA science goals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا