ﻻ يوجد ملخص باللغة العربية
The field of time-domain astrophysics has entered the era of Multi-messenger Astronomy (MMA). One key science goal for the next decade (and beyond) will be to characterize gravitational wave (GW) and neutrino sources using the next generation of Extremely Large Telescopes (ELTs). These studies will have a broad impact across astrophysics, informing our knowledge of the production and enrichment history of the heaviest chemical elements, constrain the dense matter equation of state, provide independent constraints on cosmology, increase our understanding of particle acceleration in shocks and jets, and study the lives of black holes in the universe. Future GW detectors will greatly improve their sensitivity during the coming decade, as will near-infrared telescopes capable of independently finding kilonovae from neutron star mergers. However, the electromagnetic counterparts to high-frequency (LIGO/Virgo band) GW sources will be distant and faint and thus demand ELT capabilities for characterization. ELTs will be important and necessary contributors to an advanced and complete multi-messenger network.
At the time of defining the science objectives of the INTernational Gamma-Ray Astrophysics Laboratory (INTEGRAL), such a rapid and spectacular development of multi-messenger astronomy could not have been predicted, with new impulsive phenomena becomi
Fast-spinning strongly magnetized newborn neutron stars, including nascent magnetars, are popularly implemented as the engine of luminous stellar explosions. Here, we consider the scenario that they power various stripped-envelope supernovae, not onl
The ANTARES Collaboration has completed in 2008 the deployment of what is currently the largest high energy neutrino detector in the Northern hemisphere. The search for cosmic neutrinos in the energy range between tens of GeV and tens of PeV is perfo
Astrophysical transients have been observed for millennia and have shaped our most basic assumptions about the Universe. In the last century, systematic searches have grown from detecting handfuls of transients per year to over 7000 in 2018 alone. As
The next generation of giant-segmented mirror telescopes ($>$ 20 m) will enable us to observe galactic nuclei at much higher angular resolution and sensitivity than ever before. These capabilities will introduce a revolutionary shift in our understan