ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on the $Theta$-invariant of 3-manifolds

95   0   0.0 ( 0 )
 نشر من قبل Tatsuro Shimizu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we revisit the $Theta$-invariant as defined by R. Bott and the first author. The $Theta$-invariant is an invariant of rational homology 3-spheres with acyclic orthogonal local systems, which is a generalization of the 2-loop term of the Chern-Simons perturbation theory. The $Theta$-invariant can be defined when a cohomology group is vanishing. In this note, we give a slightly modified version of the $Theta$-invariant that we can define even if the cohomology group is not vanishing.



قيم البحث

اقرأ أيضاً

81 - Tadayuki Watanabe 2016
In this paper, it is explained that a topological invariant for 3-manifold $M$ with $b_1(M)=1$ can be constructed by applying Fukayas Morse homotopy theoretic approach for Chern--Simons perturbation theory to a local system on $M$ of rational functio ns associated to the free abelian covering of $M$. Our invariant takes values in Garoufalidis--Rozanskys space of Jacobi diagrams whose edges are colored by rational functions. It is expected that our invariant gives a lot of nontrivial finite type invariants of 3-manifolds.
292 - Tadayuki Watanabe 2012
We give a generalization of Fukayas Morse homotopy theoretic approach for 2-loop Chern--Simons perturbation theory to 3-valent graphs with arbitrary number of loops at least 2. We construct a sequence of invariants of integral homology 3-spheres with values in a space of 3-valent graphs (Jacobi diagrams or Feynman diagrams) by counting graphs in an integral homology 3-sphere satisfying certain condition described by a set of ordinary differential equations.
170 - Tadayuki Watanabe 2020
In this article, we construct countably many mutually non-isotopic diffeomorphisms of some closed non simply-connected 4-manifolds that are homotopic to but not isotopic to the identity, by surgery along $Theta$-graphs. As corollaries of this, we obt ain some new results on codimension 1 embeddings and pseudo-isotopies of 4-manifolds. In the proof of the non-triviality of the diffeomorphisms, we utilize a twisted analogue of Kontsevichs characteristic class for smooth bundles, which is obtained by extending a higher dimensional analogue of March{e}--Lescops equivariant triple intersection in configuration spaces of 3-manifolds to allow Lie algebraic local coefficient system.
Every closed orientable surface S has the following property: any two connected covers of S of the same degree are homeomorphic (as spaces). In this, paper we give a complete classification of compact 3-manifolds with empty or toroidal boundary which have the above property. We also discuss related group-theoretic questions.
186 - Zhi Lu , Li Yu 2008
As a generalization of Davis-Januszkiewicz theory, there is an essential link between locally standard $(Z_2)^n$-actions (or $T^n$-actions) actions and nice manifolds with corners, so that a class of nicely behaved equivariant cut-and-paste operation s on locally standard actions can be carried out in step on nice manifolds with corners. Based upon this, we investigate what kinds of closed manifolds admit locally standard $(Z_2)^n$-actions; especially for the 3-dimensional case. Suppose $M$ is an orientable closed connected 3-manifold. When $H_1(M;Z_2)=0$, it is shown that $M$ admits a locally standard $(Z_2)^3$-action if and only if $M$ is homeomorphic to a connected sum of 8 copies of some $Z_2$-homology sphere $N$, and if further assuming $M$ is irreducible, then $M$ must be homeomorphic to $S^3$. In addition, the argument is extended to rational homology 3-sphere $M$ with $H_1(M;Z_2) cong Z_2$ and an additional assumption that the $(Z_2)^3$-action has a fixed point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا