ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-glass state and reversed magnetic anisotropy induced by Cr doping in the Kitaev magnet $alpha$-RuCl$_3$

64   0   0.0 ( 0 )
 نشر من قبل Ga\\\"el Bastien
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic properties of the substitution series Ru$_{1-x}$Cr$_x$Cl$_3$ were investigated to determine the evolution from the anisotropic Kitaev magnet $alpha$-RuCl$_3$ with $J_{rm eff} = 1/2$ magnetic Ru$^{3+}$ ions to the isotropic Heisenberg magnet CrCl$_3$ with $S = 3/2$ magnetic Cr$^{3+}$ ions. Magnetization measurements on single crystals revealed a reversal of the magnetic anisotropy under doping, which we argue to arise from the competition between anisotropic Kitaev and off-diagonal interactions on the Ru-Ru links and approximately isotropic Cr-Ru and isotropic Cr-Cr interactions. In addition, combined magnetization, ac susceptibility and specific-heat measurements clearly show the destabilization of the long-range magnetic order of $alpha$-RuCl$_3$ in favor of a spin-glass state of Ru$_{1-x}$Cr$_x$Cl$_3$ for a low doping of $xbacksimeq0.1$. The corresponding freezing temperature as a function of Cr content shows a broad maximum around $xbacksimeq0.45$.



قيم البحث

اقرأ أيضاً

$alpha$-RuCl$_3$ is drawing much attention as a promising candidate Kitaev quantum spin liquid. However, despite intensive research efforts, controversy remains about the form of the basic interactions governing the physics of this material. Even the sign of the Kitaev interaction (the bond-dependent anisotropic interaction responsible for Kitaev physics) is still under debate, with conflicting results from theoretical and experimental studies. The significance of the symmetric off-diagonal exchange interaction (referred to as the $Gamma$ term) is another contentious question. Here, we present resonant elastic x-ray scattering data that provides unambiguous experimental constraints to the two leading terms in the magnetic interaction Hamiltonian. We show that the Kitaev interaction ($K$) is ferromagnetic, and that the $Gamma$ term is antiferromagnetic and comparable in size to the Kitaev interaction. Our findings also provide a natural explanation for the large anisotropy of the magnetic susceptibility in $alpha$-RuCl$_3$ as arising from the large $Gamma$ term. We therefore provide a crucial foundation for understanding the interactions underpinning the exotic magnetic behaviours observed in $alpha$-RuCl$_3$.
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evide nce for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru $d$ states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that $alpha$-RuCl$_3$ is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at temperatures down to $0.4$ K in applied magnetic fields up to $9$ T for fields parallel to the $ab$ plane. We find a suppression of the zero-field antiferromagnetic order, together with an increase of the low-temperature specific heat, with increasing field up to $mu_0H_capprox 6.9$ T. Above $H_c$, the magnetic contribution to the low-temperature specific heat is strongly suppressed, implying the opening of a spin-excitation gap. Our data point toward a field-induced quantum critical point (QCP) at $H_c$; this is supported by universal scaling behavior near $H_c$. Remarkably, the data also reveal the existence of a small characteristic energy scale well below $1$~meV above which the excitation spectrum changes qualitatively. We relate the data to theoretical calculations based on a $J_1$--$K_1$--$Gamma_1$--$J_3$ honeycomb model.
The layered honeycomb iridate $alpha$-Li$_2$IrO$_3$ displays an incommensurate magnetic structure with counterrotating moments on nearest-neighbor sites, proposed to be stabilized by strongly-frustrated anisotropic Kitaev interactions between spin-or bit entangled Ir$^{4+}$ magnetic moments. Here we report powder inelastic neutron scattering measurements that observe sharply dispersive low-energy magnetic excitations centered at the magnetic ordering wavevector, attributed to Goldstone excitations of the incommensurate order, as well as an additional intense mode above a gap $Deltasimeq2.3$ meV. Zero-field muon-spin relaxation measurements show clear oscillations in the muon polarization below the N{e}el temperature $T_{rm N}simeq15$ K with a time-dependent profile consistent with bulk incommensurate long-range magnetism. Pulsed field magnetization measurements observe that only about half the saturation magnetization value is reached at the maximum field of 64 T. A clear anomaly near 25 T indicates a transition to a phase with reduced susceptibility. The transition field has a Zeeman energy comparable to the zero-field gapped mode, suggesting gap suppression as a possible mechanism for the field-induced transition.
The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitae v candidate materials, such as $alpha$-RuCl$_3$. Currently, two competing scenarios exist for the intermediate field phase of this compound ($B=7-10$ T), based on experimental as well as theoretical results: (i) conventional multiparticle magnetic excitations of integer quantum number vs. (ii) Majorana fermionic excitations of possibly non-Abelian nature with a fractional quantum number. To discriminate between these scenarios a detailed investigation of excitations over a wide field-temperature phase diagram is essential. Here we present Raman spectroscopic data revealing low-energy quasiparticles emerging out of a continuum of fractionalized excitations at intermediate fields, which are contrasted by conventional spin-wave excitations. The temperature evolution of these quasiparticles suggests the formation of bound states out of fractionalized excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا