ﻻ يوجد ملخص باللغة العربية
Magnetic properties of the substitution series Ru$_{1-x}$Cr$_x$Cl$_3$ were investigated to determine the evolution from the anisotropic Kitaev magnet $alpha$-RuCl$_3$ with $J_{rm eff} = 1/2$ magnetic Ru$^{3+}$ ions to the isotropic Heisenberg magnet CrCl$_3$ with $S = 3/2$ magnetic Cr$^{3+}$ ions. Magnetization measurements on single crystals revealed a reversal of the magnetic anisotropy under doping, which we argue to arise from the competition between anisotropic Kitaev and off-diagonal interactions on the Ru-Ru links and approximately isotropic Cr-Ru and isotropic Cr-Cr interactions. In addition, combined magnetization, ac susceptibility and specific-heat measurements clearly show the destabilization of the long-range magnetic order of $alpha$-RuCl$_3$ in favor of a spin-glass state of Ru$_{1-x}$Cr$_x$Cl$_3$ for a low doping of $xbacksimeq0.1$. The corresponding freezing temperature as a function of Cr content shows a broad maximum around $xbacksimeq0.45$.
$alpha$-RuCl$_3$ is drawing much attention as a promising candidate Kitaev quantum spin liquid. However, despite intensive research efforts, controversy remains about the form of the basic interactions governing the physics of this material. Even the
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4$d$ system $alpha$-RuCl$_3$ has recently come into view as a candidate Kitaev system, with evide
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at
The layered honeycomb iridate $alpha$-Li$_2$IrO$_3$ displays an incommensurate magnetic structure with counterrotating moments on nearest-neighbor sites, proposed to be stabilized by strongly-frustrated anisotropic Kitaev interactions between spin-or
The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitae