ﻻ يوجد ملخص باللغة العربية
The layered honeycomb iridate $alpha$-Li$_2$IrO$_3$ displays an incommensurate magnetic structure with counterrotating moments on nearest-neighbor sites, proposed to be stabilized by strongly-frustrated anisotropic Kitaev interactions between spin-orbit entangled Ir$^{4+}$ magnetic moments. Here we report powder inelastic neutron scattering measurements that observe sharply dispersive low-energy magnetic excitations centered at the magnetic ordering wavevector, attributed to Goldstone excitations of the incommensurate order, as well as an additional intense mode above a gap $Deltasimeq2.3$ meV. Zero-field muon-spin relaxation measurements show clear oscillations in the muon polarization below the N{e}el temperature $T_{rm N}simeq15$ K with a time-dependent profile consistent with bulk incommensurate long-range magnetism. Pulsed field magnetization measurements observe that only about half the saturation magnetization value is reached at the maximum field of 64 T. A clear anomaly near 25 T indicates a transition to a phase with reduced susceptibility. The transition field has a Zeeman energy comparable to the zero-field gapped mode, suggesting gap suppression as a possible mechanism for the field-induced transition.
Recent scattering experiments in the 3D Kitaev magnet $beta$-Li$_2$IrO$_3$ have shown that a relatively weak magnetic field along the crystallographic ${bf b}$-axis drives the system from its incommensurate counter-rotating order to a correlated para
We studied the effect of external pressure on the electrodynamic properties of $alpha$-Li$_2$IrO$_3$ single crystals in the frequency range of the phonon modes and the Ir $d$-$d$ transitions. The abrupt hardening of several phonon modes under pressur
We report the existence of a phase transition at high temperature in the 3D Kitaev candidate material, $beta$-Li$_2$IrO$_3$. We show that the transition is bulk, intrinsic and orders a tiny magnetic moment with a spatially anisotropic saturation mome
Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation ($mu$SR) measurements, as well as single-crystal x-ray diffracti
The family of edge-sharing tri-coordinated iridates and ruthenates has emerged in recent years as a major platform for Kitaev spin liquid physics, where spins fractionalize into emergent magnetic fluxes and Majorana fermions with Dirac-like dispersio