ترغب بنشر مسار تعليمي؟ اضغط هنا

First results on dark matter annual modulation from ANAIS-112 experiment

253   0   0.0 ( 0 )
 نشر من قبل Maria Martinez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ANAIS is a direct detection dark matter experiment aiming at the testing of the DAMA/LIBRA annual modulation result, which standing for about two decades has neither been confirmed nor ruled out by any other experiment in a model independent way. ANAIS-112, consisting of 112.5 kg of sodium iodide crystals, is taking data at the Canfranc Underground Laboratory, Spain, since August 2017. This letter presents the annual modulation analysis of 1.5 years of data, amounting to 157.55 kg$times$y. We focus on the model independent analysis searching for modulation and the validation of our sensitivity prospects. ANAIS-112 data are consistent with the null hypothesis (p-values of 0.65 and 0.16 for [2-6] and [1-6] keV energy regions, respectively). The best fits for the modulation hypothesis are consistent with the absence of modulation ($S_m$=-0.0044$pm$0.0058 cpd/kg/keV and -0.0015$pm$0.0063 cpd/kg/keV, respectively). They are in agreement with our estimated sensitivity for the accumulated exposure, supporting our projected goal of reaching a 3$sigma$ sensitivity to the DAMA/LIBRA result in 5 years of data taking.

قيم البحث

اقرأ أيضاً

123 - J. Amare , S. Cebrian , D. Cintas 2021
ANAIS (Annual modulation with NaI Scintillators) is a dark matter direct detection experiment consisting of 112.5 kg of NaI(Tl) detectors in operation at the Canfranc Underground Laboratory (LSC), in Spain, since August 2017. ANAIS goal is to confirm or refute in a model independent way the DAMA/LIBRA positive result: an annual modulation in the low-energy detection rate having all the features expected for the signal induced by dark matter particles in a standard galactic halo. This modulation, observed for about 20 years, is in strong tension with the negative results of other very sensitive experiments, but a model-independent comparison is still lacking. By using the same target material, NaI(Tl), such comparison is more direct and almost independent on dark matter particle and halo models. Here, we present the annual modulation analysis corresponding to three years of ANAIS data (for an effective exposure of 313.95 kg$times$y), applying a blind procedure which updates that developed for the 1.5 years analysis, and later applied to 2 years. The analysis also improves the background modelling in the fitting of the region of interest rates. We obtain for the best fit in the [1-6] keV ([2-6] keV) energy region a modulation amplitude of -0.0034$pm$0.0042 cpd/kg/keV (0.0003$pm$0.0037 cpd/kg/keV), supporting the absence of modulation in our data, and incompatible with DAMA/LIBRA result at 3.3 (2.6) $sigma$, for a sensitivity of 2.5 (2.7) $sigma$. Moreover, we include two complementary analyses: a phase-free annual modulation search and the exploration of the possible presence of a periodic signal at other frequencies. Finally, we carry out several consistency checks of our result, and we update the ANAIS-112 projected sensitivity for the scheduled 5 years of operation.
A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of Weakly Interacting Massive Particles (WIM Ps) as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars mightlead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular to Next-to-Minimal Supersymmetric Model candidates.
New Experiments With Spheres-Gas (NEWS-G) is a direct dark matter detection experiment using Spherical Proportional Counters (SPCs) with light noble gases to search for low-mass Weakly Interacting Massive Particles (WIMPs). We report the results from the first physics run taken at the Laboratoire Souterrain de Modane (LSM) with SEDINE, a 60 cm diameter prototype SPC operated with a mixture of $mathrm{Ne}+mathrm{CH}_{4}$ (0.7 %) at 3.1 bars for a total exposure of $9.7;mathrm{kgcdot days}$. New constraints are set on the spin-independent WIMP-nucleon scattering cross-section in the sub-$mathrm{GeV/c^2}$ mass region. We exclude cross-sections above $4.4 times mathrm{10^{-37};cm^2}$ at 90 % confidence level (C.L.) for a 0.5 $mathrm{GeV/c^2}$ WIMP. The competitive results obtained with SEDINE are promising for the next phase of the NEWS-G experiment: a 140 cm diameter SPC to be installed at SNOLAB by summer 2018.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector syst ems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of $pi^{0}$, $eta$ and $omega$ mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the $rho$ has been observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا