ترغب بنشر مسار تعليمي؟ اضغط هنا

Imputation estimators for unnormalized models with missing data

104   0   0.0 ( 0 )
 نشر من قبل Masatoshi Uehara
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Several statistical models are given in the form of unnormalized densities, and calculation of the normalization constant is intractable. We propose estimation methods for such unnormalized models with missing data. The key concept is to combine imputation techniques with estimators for unnormalized models including noise contrastive estimation and score matching. In addition, we derive asymptotic distributions of the proposed estimators and construct confidence intervals. Simulation results with truncated Gaussian graphical models and the application to real data of wind direction reveal that the proposed methods effectively enable statistical inference with unnormalized models from missing data.

قيم البحث

اقرأ أيضاً

Missing data imputation can help improve the performance of prediction models in situations where missing data hide useful information. This paper compares methods for imputing missing categorical data for supervised classification tasks. We experime nt on two machine learning benchmark datasets with missing categorical data, comparing classifiers trained on non-imputed (i.e., one-hot encoded) or imputed data with different levels of additional missing-data perturbation. We show imputation methods can increase predictive accuracy in the presence of missing-data perturbation, which can actually improve prediction accuracy by regularizing the classifier. We achieve the state-of-the-art on the Adult dataset with missing-data perturbation and k-nearest-neighbors (k-NN) imputation.
Missing data is a crucial issue when applying machine learning algorithms to real-world datasets. Starting from the simple assumption that two batches extracted randomly from the same dataset should share the same distribution, we leverage optimal tr ansport distances to quantify that criterion and turn it into a loss function to impute missing data values. We propose practical methods to minimize these losses using end-to-end learning, that can exploit or not parametric assumptions on the underlying distributions of values. We evaluate our methods on datasets from the UCI repository, in MCAR, MAR and MNAR settings. These experiments show that OT-based methods match or out-perform state-of-the-art imputation methods, even for high percentages of missing values.
This paper proposes a fast and accurate method for sparse regression in the presence of missing data. The underlying statistical model encapsulates the low-dimensional structure of the incomplete data matrix and the sparsity of the regression coeffic ients, and the proposed algorithm jointly learns the low-dimensional structure of the data and a linear regressor with sparse coefficients. The proposed stochastic optimization method, Sparse Linear Regression with Missing Data (SLRM), performs an alternating minimization procedure and scales well with the problem size. Large deviation inequalities shed light on the impact of the various problem-dependent parameters on the expected squared loss of the learned regressor. Extensive simulations on both synthetic and real datasets show that SLRM performs better than competing algorithms in a variety of contexts.
89 - Aude Sportisse 2018
Missing values challenge data analysis because many supervised and unsupervised learning methods cannot be applied directly to incomplete data. Matrix completion based on low-rank assumptions are very powerful solution for dealing with missing values . However, existing methods do not consider the case of informative missing values which are widely encountered in practice. This paper proposes matrix completion methods to recover Missing Not At Random (MNAR) data. Our first contribution is to suggest a model-based estimation strategy by modelling the missing mechanism distribution. An EM algorithm is then implemented, involving a Fast Iterative Soft-Thresholding Algorithm (FISTA). Our second contribution is to suggest a computationally efficient surrogate estimation by implicitly taking into account the joint distribution of the data and the missing mechanism: the data matrix is concatenated with the mask coding for the missing values; a low-rank structure for exponential family is assumed on this new matrix, in order to encode links between variables and missing mechanisms. The methodology that has the great advantage of handling different missing value mechanisms is robust to model specification errors.The performances of our methods are assessed on the real data collected from a trauma registry (TraumaBase ) containing clinical information about over twenty thousand severely traumatized patients in France. The aim is then to predict if the doctors should administrate tranexomic acid to patients with traumatic brain injury, that would limit excessive bleeding.
We consider the problem of handling missing data with deep latent variable models (DLVMs). First, we present a simple technique to train DLVMs when the training set contains missing-at-random data. Our approach, called MIWAE, is based on the importan ce-weighted autoencoder (IWAE), and maximises a potentially tight lower bound of the log-likelihood of the observed data. Compared to the original IWAE, our algorithm does not induce any additional computational overhead due to the missing data. We also develop Monte Carlo techniques for single and multiple imputation using a DLVM trained on an incomplete data set. We illustrate our approach by training a convolutional DLVM on a static binarisation of MNIST that contains 50% of missing pixels. Leveraging multiple imputation, a convolutional network trained on these incomplete digits has a test performance similar to one trained on complete data. On various continuous and binary data sets, we also show that MIWAE provides accurate single imputations, and is highly competitive with state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا