ﻻ يوجد ملخص باللغة العربية
We derive from the subleading contributions to the chiral three-nucleon force (long-range terms, published in Phys.,Rev.,C,77, 064004 (2008)) a density-dependent two-nucleon interaction $V_text{med}$ in isospin-symmetric, spin-saturated nuclear matter. Following the division of the pertinent 3N-diagrams into two-pion exchange topology, two-pion-one-pion exchange topology and ring topology, we evaluate for these all self-closings and concatenations of nucleon-lines to an in-medium loop. The momentum and $k_f$-dependent potentials associated with the isospin operators ($1$ and $vectau_1!cdot!vectau_2$) and five independent spin-structures are expressed in terms of functions, which are either given in closed analytical form or require at most one numerical integration. In the same way we treat the $2pi$-exchange 3N-force up to fourth order. Our results for $V_text{med}$ are most helpful to implement the long-range subleading chiral 3N-forces into nuclear many-body calculations.
The long-range terms of the subleading chiral three-nucleon force [published in Phys.,Rev.,C77, 064004 (2008)] are specified to the case of three neutrons. From these $3n$-interactions an effective density-dependent neutron-neutron potential $V_text{
From the subsubleading chiral three-nucleon force [intermediate-range contributions, published in Phys. Rev. C,87, 054007 (2013)] a density-dependent NN-interaction $V_text{med}$ is derived in isospin-symmetric nuclear matter. Following the division
We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p-shell. We highlight important technical developments, such as the similarity renormal
The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic e
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of