ﻻ يوجد ملخص باللغة العربية
From the subsubleading chiral three-nucleon force [intermediate-range contributions, published in Phys. Rev. C,87, 054007 (2013)] a density-dependent NN-interaction $V_text{med}$ is derived in isospin-symmetric nuclear matter. Following the division of the pertinent 3N-diagrams into two-pion-one-pion exchange topology and ring topology, one evaluates for these all selfclosings and concatenations of nucleon-lines to an in-medium loop. In the case of the $2pi 1pi$-exchange topology, the momentum- and $k_f$-dependent potentials associated with the isospin-operators ($1$ and $vectau_1 !cdot! vectau_2$) and five independent spin-structures require at most one numerical integration. For the more challenging (concatenations of the) ring diagrams proportional to $c_{1,2,3,4}$, one ends up with regularized double-integrals $int_0^lambda dr,r int_0^{pi/2} dpsi$ from which the $lambda^2$-divergence has been subtracted and the logarithmic piece $sim ln (m_pi/lambda)$ is isolated. The derived semi-analytical results are most helpful to implement the subsubleading chiral 3N-forces into nuclear many-body calculations.
We derive from the subleading contributions to the chiral three-nucleon force (long-range terms, published in Phys.,Rev.,C,77, 064004 (2008)) a density-dependent two-nucleon interaction $V_text{med}$ in isospin-symmetric, spin-saturated nuclear matte
The long-range terms of the subleading chiral three-nucleon force [published in Phys.,Rev.,C77, 064004 (2008)] are specified to the case of three neutrons. From these $3n$-interactions an effective density-dependent neutron-neutron potential $V_text{
We discuss the building blocks for a consistent inclusion of chiral three-nucleon (3N) interactions into ab initio nuclear structure calculations beyond the lower p-shell. We highlight important technical developments, such as the similarity renormal
The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence of the nuclear equation of state (EOS), which is commonly assumed to be almost quadratic. In this work, we confront this standard quadratic e
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of