ترغب بنشر مسار تعليمي؟ اضغط هنا

The survey of Planetary Nebulae in Andromeda (M31): I. Imaging the disk and halo with MegaCam@CFHT

119   0   0.0 ( 0 )
 نشر من قبل Souradeep Bhattacharya
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Andromeda (M31) galaxy subtends nearly 100 sq. deg. on the sky, with severe contamination from the Milky Way halo stars whose surface density displays a steep gradient across the entire M31 field-of-view. Planetary Nebulae (PNe) are a population of stars firmly associated with M31, that are excellent tracers of light, chemistry and motion in galaxies. We present a 16 sq. deg. survey of the disk and inner halo of M31 with MegaCam@CFHT to identify PNe, characterize their luminosity-specific PN number and luminosity function (PNLF). PNe were identified based on their bright OIII 5007 $unicode{x212B}$ emission and absence of a continuum. Subsamples of the faint PNe were independently confirmed by matching with resolved Hubble Space Telescope sources from the PHAT survey and spectroscopic follow-up observations with HectoSpec@MMT. The current survey reaches 2 mag fainter than the previous most-sensitive survey. We identify 4289 PNe, of which only 1099 were previously known. By comparing the PN number density with the surface brightness profile of M31 out to ~30 kpc along the minor-axis, we find that the stellar population in the inner halo has a 7 times larger luminosity-specific PN number value than that of the disk. It indicates that the stellar population at deprojected minor-axis radii larger than ~10 kpc is different from that in the M31 disk. We measure the PNLF and find a bright cut-off and a slope consistent with the previous determination by Ciardullo et al. (1989). Interestingly, it shows a significant rise at the faint end, present in all radial bins covered by the survey, much steeper than that observed for the Magellanic clouds and Milky Way bulge. M31 shows two major episodes of star formation and the rise in the faint end of the PNLF is possibly associated with the older stellar population. It may also be a result of varying opacity of the PNe.



قيم البحث

اقرأ أيضاً

The age-velocity dispersion relation is an important tool to understand the evolution of the disc of the Andromeda galaxy (M31) in comparison with the Milky Way. We use Planetary Nebulae (PNe) to obtain the age-velocity dispersion relation in differe nt radial bins of the M31 disc. We separate the observed PNe sample based on their extinction values into two distinct age populations. The observed velocities of our high- and low-extinction PNe, which correspond to higher and lower mass progenitors respectively, are fitted in de-projected elliptical bins to obtain their rotational velocities, $V_{phi}$, and corresponding dispersions, $rmsigma_{phi}$. We assign ages to the two PNe populations by comparing central-star properties of an archival sub-sample of PNe, having models fitted to their observed spectral features, to stellar evolution tracks. For the high- and low-extinction PNe, we find ages of $sim2.5$ Gyr and $sim4.5$ Gyr respectively, with distinct kinematics beyond a deprojected radius R$rm_{GC}= 14$ kpc. At R$rm_{GC}$=17--20 kpc, which is the equivalent distance in disc scale lengths of the Sun in the Milky Way disc, we obtain $rmsigma_{phi,~2.5~Gyr}= 61pm 14$ km s$^{-1}$ and $rmsigma_{phi,~4.5~Gyr}= 101pm 13$ km s$^{-1}$. The age-velocity dispersion relation for the M31 disc is obtained in two radial bins, R$rm_{GC}$=14--17 and 17--20 kpc. The high- and low-extinction PNe are associated with the young thin and old thicker disc of M31 respectively, whose velocity dispersion values increase with age. These values are almost twice and thrice that of the Milky Way disc stellar population of corresponding ages. From comparison with simulations of merging galaxies, we find that the age-velocity dispersion relation in the M31 disc measured using PNe is indicative of a single major merger that occurred 2.5 -- 4.5 Gyr ago with an estimated merger mass ratio $approx$ 1:5.
The Andromeda (M31) galaxy displays several substructures in its inner halo whose origin as remnants of accreted satellites or perturbations of the pre-existing disc are encoded in the properties of their stellar populations (SPs), leaving traces on their deep [OIII] 5007 AA planetary nebulae luminosity functions (PNLFs). By characterizing the morphology of the PNLFs, we constrain their origin. From our 54 sq. deg. deep narrow-band [OIII] survey of M31, we identify planetary nebulae (PNe) in the M31 disc and six major inner-halo substructures - the Giant Stream, North East Shelf, G1-Clump, Northern Clump, Western Shelf and Stream-D. We measure PNLF parameters from cumulative fits and statistically compare the PNLFs in each substructure and the disc. We link the PNLF parameters and those for the Large Magellanic Cloud to published metallicities and age measurements for their parent SPs. The absolute magnitudes of the PNLF bright cut-off ($M^{*}$) for these sub-populations span a significant magnitude range, despite having similar distance and line-of-sight extinction. $M^{*}$ for the Giant Stream, W-shelf and Stream-D PNLFs are fainter than those predicted by PN evolution models for the metallicity of the parent SPs. The faint-end slope of the PNLF increases linearly with decreasing fraction of stellar mass younger than 5 Gyr across the M31 regions and the LMC. From their PNLFs, the Giant Stream and NE-shelf are consistent with being stellar debris from an infalling satellite, while the G1 Clump appears to be linked with the pre-merger disc. The SPs of the substructures are consistent with those predicted by simulations of a single massive merger event that took place 2--3 Gyr ago in M31. Stream-D has an unrelated, distinct, origin. Furthermore, this study provides independent evidence that the faint-end of the PNLF is preferentially populated by PNe evolved from older stars.
We describe a deep, systematic imaging study of satellites in the outer halo of the Milky Way. Our sample consists of 58 stellar overdensities --- i.e., substructures classified as either globular clusters, classical dwarf galaxies, or ultra-faint dw arf galaxies --- that are located at Galactocentric distances of R$_{rm GC}$ > 25 kpc (outer halo) and out to ~400 kpc. This includes 44 objects for which we have acquired deep, wide-field, $g-$ and $r-$band imaging with the MegaCam mosaic cameras on the 3.6m Canada-France-Hawaii Telescope and the 6.5m Magellan-Clay telescope. These data are supplemented by archival imaging, or published $gr$ photometry, for an additional 14 objects, most of which were discovered recently in the Dark Energy Survey (DES). We describe the scientific motivation for our survey, including sample selection, observing strategy, data reduction pipeline, calibration procedures, and the depth and precision of the photometry. The typical 5$sigma$ point-source limiting magnitudes for our MegaCam imaging --- which collectively covers an area of ~52 deg$^{2}$ --- are $g_{rm lim}$ ~25.6 and $r_{rm lim}$ ~25.3 AB mag. These limits are comparable to those from the coadded DES images and are roughly a half-magnitude deeper than will be reached in a single visit with LSST. Our photometric catalog thus provides the deepest and most uniform photometric database of Milky Way satellites available for the foreseeable future. In other papers in this series, we have used these data to explore the blue straggler populations in these objects, their density distributions, star formation histories, scaling relations and possible foreground structures.
Our proximity and external vantage point make M31 an ideal testbed for understanding the structure of spiral galaxies. The Andromeda Optical and Infrared Disk Survey (ANDROIDS) has mapped M31s bulge and disk out to R=40 kpc in $ugriJK_s$ bands with C FHT using a careful sky calibration. We use Bayesian modelling of the optical-infrared spectral energy distribution (SED) to estimate profiles of M31s stellar populations and mass along the major axis. This analysis provides evidence for inside-out disk formation and a declining metallicity gradient. M31s $i$-band mass-to-light ratio ($M/L_i^*$) decreases from 0.5 dex in the bulge to $sim 0.2$ dex at 40 kpc. The best-constrained stellar population models use the full $ugriJK_s$ SED but are also consistent with optical-only fits. Therefore, while NIR data can be successfully modelled with modern stellar population synthesis, NIR data do not provide additional constraints in this application. Fits to the $gi$-SED alone yield $M/L_i^*$ that are systematically lower than the full SED fit by 0.1 dex. This is still smaller than the 0.3 dex scatter amongst different relations for $M/L_i$ via $g-i$ colour found in the literature. We advocate a stellar mass of $M_*(30mathrm{kpc})=10.3^{+2.3}_{-1.7}times 10^{10}mathrm{M}_odot$ for the M31 bulge and disk.
We present spectroscopy of nine planetary nebulae (PNe) in the outskirts of M31, all but one obtained with the 10.4m GTC telescope. These sources extend our previous study of the oxygen abundance gradient of M31 to galactocentric radii as large as 10 0 kpc. None of the targets are bona fide members of a classical, metal-poor and ancient halo. Two of the outermost PNe have solar oxygen abundances, as well as radial velocities consistent with the kinematics of the extended disk of M31. The other PNe have a slightly lower oxygen content ([O/H] ~ -0.4) and in some cases large deviations from the disk kinematics. These PNe support the current view that the external regions of M31 are the result of a complex interaction and merger process, with evidence for a widespread population of solar-metallicity stars produced in a starburst that occurred ~2 Gyr ago.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا