ﻻ يوجد ملخص باللغة العربية
Lanthanum (La) is the first member of the rare-earth series of elements that has recently raised considerable interest because of its unique high-Tc superhydride LaH10. Although several studies have found superconductivity and phase transitions in metallic La, there was a lack of experimental evidence for the equation of state (EoS) and superconductivity above one megabar pressure. Here, we extend the pressure range up to 140 GPa to study EoS and superconductivity of lanthanum via electrical transport and X-ray diffraction measurements. The experimental XRD patterns point to a phase transition sequences R3m-Fm3m-Fmmm above 78 GPa. All the experimental pressure-volume data were fitted by the 3rd order Birch-Murnaghan equation: V0 = 35.2 (4) A^3, B0 = 27 (1) GPa and B0 = 4. Superconducting critical temperature Tc(onset) of lanthanum is 9.6 K at 78 GPa, which decreases to 2.2 K at 140 GPa. The upper critical magnetic field Bc2(0) was found to be 0.32-0.43 T at 140 GPa. Ab initio calculations give predicted Tc(A-D)=2.2 K (mu*=0.195), dTc/dP = 0.11-0.13 K/GPa and Hc=0.4 T at 140 GPa.
Recent predictions and experimental observations of high Tc superconductivity in hydrogen-rich materials at very high pressures are driving the search for superconductivity in the vicinity of room temperature. We have developed a novel preparation te
Rare-earth hydrides can exhibit high-temperature superconductivity under high pressure. Here, we apply a crystal structure prediction method to the current record-holding $T_c$ material, LaH$_{10}$, and a candidate for even higher $T_c$, YH$_{10}$. W
The use of high pressure to realize superconductivity in the vicinity of room temperature has a long history, much of it focused on achieving this in hydrogen rich materials. This paper provides a brief overview of the work presented at this May 2018
We show that polycrystalline GeSb2Te4 in the fcc phase (f-GST), which is an insulator at low temperature at ambient pressure, becomes a superconductor at elevated pressures. Our study of the superconductor to insulator transition versus pressure at l
Motivated by the recent discovery of near-room temperature superconductivity in high-pressure superhydrides, we investigate from first-principles the high-pressure superconducting phase diagram of the ternary Ca-B-H system, using ab-initio evolutiona