ترغب بنشر مسار تعليمي؟ اضغط هنا

Road to Room-Temperature Superconductivity: Tc above 260 K in Lanthanum Superhydride under Pressure

99   0   0.0 ( 0 )
 نشر من قبل Hanyu Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of high pressure to realize superconductivity in the vicinity of room temperature has a long history, much of it focused on achieving this in hydrogen rich materials. This paper provides a brief overview of the work presented at this May 2018 conference, together with background on motivation and techniques, the theoretical predictions of superconductivity in lanthanum hydride, and the subsequent experimental confirmation. Theoretical calculations using density functional based structure search methods combined with BCS type models predicted a new class of dense, hydrogen rich materials superhydrides with superconducting critical temperatures in the vicinity of room temperature at and above 200 GPa pressures. The existence of a series of these phases in the La H system was subsequently confirmed experimentally, and techniques were developed for their syntheses and characterization, including measurements of structural and transport properties, at megabar pressures. Four probe electrical transport measurements of a cubic phase identified as LaH10 display signatures of superconductivity at temperatures above 260 K near 200 GPa. The results are supported by pseudo four probe conductivity measurements, critical current determinations, low-temperature xray diffraction, and magnetic susceptibility measurements. The measured high Tc is in excellent agreement with the original calculations. The experiments also reveal additional superconducting phases with Tc between 150 K and above 260 K. This effort highlights the novel physics in hydrogen-rich materials at high densities, the success of materials by design in the discovery and creation of new materials, and the possibility of new classes of superconductors Tc at and above room temperature.



قيم البحث

اقرأ أيضاً

Recent theoretical and experimental studies of hydrogen-rich materials at megabar pressures (i.e., >100 GPa) have led to the discovery of very high-temperature superconductivity in these materials. Lanthanum superhydride LaH$_{10}$ has been of partic ular focus as the first material to exhibit a superconducting critical temperature (T$_c$) near room temperature. Experiments indicate that the use of ammonia borane as the hydrogen source can increase the conductivity onset temperatures of lanthanum superhydride to as high as 290 K. Here we examine the doping effects of B and N atoms on the superconductivity of LaH$_{10}$ in its fcc (Fm-3m) clathrate structure at megabar pressures. Doping at H atomic positions strengthens the H$_{32}$ cages of the structure to give higher phonon frequencies that enhance the Debye frequency and thus the calculated T$_c$. The predicted T$_c$ can reach 288 K in LaH$_{9.985}$N$_{0.015}$ within the average high-symmetry structure at 240 GPa.
Recent predictions and experimental observations of high Tc superconductivity in hydrogen-rich materials at very high pressures are driving the search for superconductivity in the vicinity of room temperature. We have developed a novel preparation te chnique that is optimally suited for megabar pressure syntheses of superhydrides using pulsed laser heating while maintaining the integrity of sample-probe contacts for electrical transport measurements to 200 GPa. We detail the synthesis and characterization, including four-probe electrical transport measurements, of lanthanum superhydride samples that display a significant drop in resistivity on cooling beginning around 260 K and pressures of 190 GPa. Additional measurements on two additional samples synthesized the same way show resistance drops beginning as high as 280 K at these pressures. The loss of resistance at these high temperatures is not observed in control experiments on pure La as well as in partially transformed samples at these pressures, and x-ray diffraction as a function of temperature on the superhydride reveal no structural changes on cooling. We infer that the resistance drop is a signature of the predicted room-temperature superconductivity in LaH10, in good agreement with density functional structure search and BCS theory calculations.
It is a honor to write a contribution on this memorial for Sandro Massidda. For both of us, at different stages of our life, Sandro was first and foremost a friend. We both admired his humble, playful and profound approach to life and physics. In thi s contribution we describe the route which permitted to meet a long-standing challenge in solid state physics, i.e. room temperature superconductivity. In less than 20 years the Tc of conventional superconductors, which in the last century had been widely believed to be limited to 25 K, was raised from 40 K in MgB2 to 265 K in LaH10. This discovery was enabled by the development and application of computational methods for superconductors, a field in which Sandro Massidda played a major role.
The discovery of high-temperature conventional superconductivity in H3S with a critical temperature of Tc=203 K was followed by the recent record of Tc ~250 K in the face-centered cubic (fcc) lanthanum hydride LaH10 compound. It was realized in a new class of hydrogen-dominated compounds having a clathrate-like crystal structure in which hydrogen atoms form a 3D framework and surround a host atom of rare earth elements. Yttrium hydrides are predicted to have even higher Tc exceeding room temperature. In this paper, we synthesized and refined the crystal structure of new hydrides: YH4, YH6, and YH9 at pressures up to 237 GPa finding that YH4 crystalizes in the I4/mmm lattice, YH6 in Im-3m lattice and YH9 in P63/mmc lattice in excellent agreement with the calculations. The observed very high-temperature superconductivity is comparable to that found in fcc-LaH10: the pressure dependence of Tc for YH9 also displays a dome like shape with the highest Tc of 243 K at 201 GPa. We also observed a Tc of 227 K at 237 GPa for the YH6 phase. However, the measured Tcs are notably lower by ~30 K than predicted. Evidence for superconductivity includes the observation of zero electrical resistance, a decrease of Tc under an external magnetic field and an isotope effect. The theoretically predicted fcc YH10 with the promising highest Tc>300 K was not stabilized in our experiments under pressures up to 237 GPa.
A huge enhancement of the superconducting transition temperature Tc was observed in tetragonal FeSe superconductor under high pressure. The onset temperature became as high as 27 K at 1.48 GPa and the pressure coefficient showed a huge value of 9.1 K /GPa. The upper critical field Hc2 was estimated to be ~ 72 T at 1.48 GPa. Because of the high Hc2, FeSe system may be a candidate for application as superconducting wire rods. Moreover, the investigation of superconductivity on simple structured FeSe may provide important clues to the mechanism of superconductivity in iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا