ﻻ يوجد ملخص باللغة العربية
We develop a combinatorial rule to compute the real geometry of type B Schubert curves $S(lambda_bullet)$ in the orthogonal Grassmannian $mathrm{OG}_n$, which are one-dimensional Schubert problems defined with respect to orthogonal flags osculating the rational normal curve. Our results are natural analogs of results previously known only in type A. First, using the type B Wronski map, we show that the real locus of the Schubert curve has a natural covering map to $mathbb{RP}^1$, with monodromy operator $omega$ defined as the commutator of jeu de taquin rectification and promotion on skew shifted semistandard tableaux. We then introduce two different algorithms to compute $omega$ without rectifying the skew tableau. The first uses recently-developed shifted tableau crystal operators, while the second uses local switches much like jeu de taquin. The switching algorithm further computes the K-theory coefficient of the Schubert curve: its nonadjacent switches precisely enumerate Pechenik and Yongs shifted genomic tableaux. The connection to K-theory also gives rise to a partial understanding of the complex geometry of these curves.
The cohomology of the affine flag variety of a complex reductive group is a comodule over the cohomology of the affine Grassmannian. We give positive formulae for the coproduct of an affine Schubert class in terms of affine Stanley classes and finite
We study the back stable Schubert calculus of the infinite flag variety. Our main results are: 1) a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; 2) a novel definition of do
The Murnaghan-Nakayama rule expresses the product of a Schur function with a Newton power sum in the basis of Schur functions. We establish a version of the Murnaghan-Nakayama rule for Schubert polynomials and a version for the quantum cohomology rin
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch