ﻻ يوجد ملخص باللغة العربية
We study the back stable Schubert calculus of the infinite flag variety. Our main results are: 1) a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; 2) a novel definition of double and triple Stanley symmetric functions; 3) a proof of the positivity of double Edelman-Greene coefficients generalizing the results of Edelman-Greene and Lascoux-Schutzenberger; 4) the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman-Greene insertion algorithm; 5) the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; 6) equivariant Pieri rules for the homology of the infinite Grassmannian; 7) homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.
We study the back stable $K$-theory Schubert calculus of the infinite flag variety. We define back stable (double) Grothendieck polynomials and double $K$-Stanley functions and establish coproduct expansion formulae. Applying work of Weigandt, we ext
We first define an action of the double coinvariant algebra $DR_n$ on the homology of the affine flag variety $widetilde{Fl}_n$ in type $A$, and use affine Schubert calculus to prove that it preserves the image of the homology of the rational $(n,m)$
The cohomology of the affine flag variety of a complex reductive group is a comodule over the cohomology of the affine Grassmannian. We give positive formulae for the coproduct of an affine Schubert class in terms of affine Stanley classes and finite
The Murnaghan-Nakayama rule expresses the product of a Schur function with a Newton power sum in the basis of Schur functions. We establish a version of the Murnaghan-Nakayama rule for Schubert polynomials and a version for the quantum cohomology rin
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch