ﻻ يوجد ملخص باللغة العربية
Recent measurements of an unusual high thermal conductivity of around 1000 W m-1 K-1 at room temperature in cubic boron arsenide (BAs) confirm predictions from theory and suggest potential applications of this semiconductor compound for thermal management applications. Knowledge of the thermal expansion coefficient and Gruneisen parameter of a material contributes both to the fundamental understanding of its lattice anharmonicity and to assessing its utility as a thermal-management material. However, previous theoretical calculations of the thermal expansion coefficient and Gruneisen parameter of BAs yield inconsistent results. Here we report the linear thermal expansion coefficient of BAs obtained from the X-ray diffraction measurements from 300 K to 773 K. The measurement results are in good agreement with our ab initio calculations that account for atomic interactions up to fifth nearest neighbours. With the measured thermal expansion coefficient and specific heat, a Gruneisen parameter of BAs of 0.84 +/- 0.09 is obtained at 300 K, in excellent agreement with the value of 0.82 calculated from first principles and much lower than prior theoretical results. Our results confirm that BAs exhibits a better thermal expansion coefficient match with commonly used semiconductors than other high-thermal conductivity materials such as diamond and cubic boron nitride.
The ultrahigh thermal conductivity of boron arsenide makes it a promising material for next-generation electronics and optoelectronics. In this work, we report measured optical properties of cubic boron arsenide crystals including the complex dielect
Boron arsenide (c-BAs) is at the forefront of research on ultrahigh thermal conductivity materials. We present a Raman scattering study of isotopically tailored cubic boron arsenide single crystals for 11 isotopic compositions spanning the range from
Reducing thermal conductivity ($kappa$) is an efficient way to boost the thermoelectric performance to achieve direct solid-state conversion to electrical power from thermal energy, which has lots of valuable applications in reusing waste resources.
Despite the widespread use of silicon in modern technology, its peculiar thermal expansion is not well-understood. Adapting harmonic phonons to the specific volume at temperature, the quasiharmonic approximation, has become accepted for simulating th
BAs is III-V semiconductor with ultra-high thermal conductivity, but many of its electronic properties are unknown. This work applies predictive atomistic calculations to investigate the properties of BAs heterostructures, such as strain effects on b