ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical properties of cubic boron arsenide

107   0   0.0 ( 0 )
 نشر من قبل Emmanouil Kioupakis
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ultrahigh thermal conductivity of boron arsenide makes it a promising material for next-generation electronics and optoelectronics. In this work, we report measured optical properties of cubic boron arsenide crystals including the complex dielectric function, refractive index, and absorption coefficient in the ultraviolet, visible, and near-infrared wavelength range. The data were collected at room temperature using spectroscopic ellipsometry as well as transmission and reflection spectroscopy. We further calculate the optical response using density functional and many-body perturbation theory, considering quasiparticle and excitonic corrections. The computed values for the direct and indirect band gaps (4.25 eV and 2.07 eV) agree well with the measured results (4.12 eV and 2.02 eV). Our findings contribute to the effort of using boron arsenide in novel electronic and optoelectronic applications that take advantage of its demonstrated ultrahigh thermal conductivity and predicted high ambipolar carrier mobility.

قيم البحث

اقرأ أيضاً

213 - Xi Chen , Chunhua Li , Fei Tian 2019
Recent measurements of an unusual high thermal conductivity of around 1000 W m-1 K-1 at room temperature in cubic boron arsenide (BAs) confirm predictions from theory and suggest potential applications of this semiconductor compound for thermal manag ement applications. Knowledge of the thermal expansion coefficient and Gruneisen parameter of a material contributes both to the fundamental understanding of its lattice anharmonicity and to assessing its utility as a thermal-management material. However, previous theoretical calculations of the thermal expansion coefficient and Gruneisen parameter of BAs yield inconsistent results. Here we report the linear thermal expansion coefficient of BAs obtained from the X-ray diffraction measurements from 300 K to 773 K. The measurement results are in good agreement with our ab initio calculations that account for atomic interactions up to fifth nearest neighbours. With the measured thermal expansion coefficient and specific heat, a Gruneisen parameter of BAs of 0.84 +/- 0.09 is obtained at 300 K, in excellent agreement with the value of 0.82 calculated from first principles and much lower than prior theoretical results. Our results confirm that BAs exhibits a better thermal expansion coefficient match with commonly used semiconductors than other high-thermal conductivity materials such as diamond and cubic boron nitride.
104 - Akash Rai , Sheng Li , Hanlin Wu 2020
Boron arsenide (c-BAs) is at the forefront of research on ultrahigh thermal conductivity materials. We present a Raman scattering study of isotopically tailored cubic boron arsenide single crystals for 11 isotopic compositions spanning the range from nearly pure c-$^{10}$BAs to nearly pure c-$^{11}$BAs. Our results provide insights on the effects of strong mass disorder on optical phonons and the appearance of two-mode behavior in the Raman spectra of mixed crystals. Strong isotope disorder also relaxes the one-phonon Raman selection rules, resulting in disorder-activated Raman scattering by acoustic phonons.
The 300 K equation of state of cubic (zinc-blende) boron phosphide BP has been studied by in situ single-crystal X-ray diffraction with synchrotron radiation up to 55 GPa. The measurements have been performed under quasi-hydrostatic conditions using a Ne pressure medium in a diamond anvil cell. A fit of the experimental p-V data to the Vinet equation of state yields the bulk modulus B0 of 179(1) GPa with its pressure derivative of 3.3(1). These values are in a good agreement with previous elastic measurements, as well as with semiempirical estimations.
122 - Jin Yu , Lihua Qu , Edo van Veen 2017
Boron nitride structures have excellent thermal and chemical stabilities. Based on state-of-art theoretical calculations, we propose a wide gap semiconducting BN crystal with a three-dimensional hyperhoneycomb structure (Hp-BN), which is both mechani cally and thermodynamically stable. Our calculated results show that Hp-BN has a higher bulk modulus and a smaller energy gap as compared to c-BN. Moreover, due to the unique bonding structure, Hp-BN exhibits anisotropic electronic and optical properties. It has great adsorption in the ultraviolet region, but it is highly transparent in the visible and infrared region, suggesting that the Hp-BN crystal could have potential applications in electronic and optical devices.
BAs is III-V semiconductor with ultra-high thermal conductivity, but many of its electronic properties are unknown. This work applies predictive atomistic calculations to investigate the properties of BAs heterostructures, such as strain effects on b and alignments and carrier mobility, considering BAs as both a thin film and a substrate for lattice-matched materials. The results show that strain decreases the band gap independent of sign or direction. In addition, biaxial tensile strain increases the in-plane electron and hole mobilities by more than 60% compared to the unstrained values due to a reduction of the electron effective mass and of hole interband scattering. Moreover, BAs is shown to be nearly lattice-matched with InGaN and ZnSnN2, two important optoelectronic semiconductors with tunable band gaps by alloying and cation disorder, respectively. The results predict type-II band alignments and determine the absolute band offsets of these two materials with BAs. The combination of the ultra-high thermal conductivity and intrinsic p-type character of BAs, with its high electron and hole mobilities that can be further increased by tensile strain, as well as the lattice-match and the type-II band alignment with intrinsically n-type InGaN and ZnSnN2 demonstrate the potential of BAs heterostructures for electronic and optoelectronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا