ﻻ يوجد ملخص باللغة العربية
The combinatorial mutation of polygons, which makes a given lattice polygon another one, is an important operation to understand mirror partners for two-dimensional Fano manifolds, and the mutation-equivalent polygons give the $mathbb{Q}$-Gorenstein deformation-equivalent toric varieties. On the other hand, for a dimer model, which is a bipartite graph described on the real two-torus, we assign the lattice polygon called the perfect matching polygon. It is known that for each lattice polygon $P$ there exists a dimer model such that it gives $P$ as the perfect matching polygon and satisfies the consistency condition. Moreover, a dimer model has rich information regarding toric geometry associated with the perfect matching polygon. In this paper, we introduce a set of operations that we call the deformations of consistent dimer models, and show that the deformations of consistent dimer models induce the combinatorial mutations of the associated perfect matching polygons.
Coisotropic deformations of algebraic varieties are defined as those for which an ideal of the deformed variety is a Poisson ideal. It is shown that coisotropic deformations of sets of intersection points of plane quadrics, cubics and space algebraic
Correlation functions in quantum field theory are calculated using Feynman amplitudes, which are finite dimensional integrals associated to graphs. The integrand is the exponential of the ratio of the first and second Symanzik polynomials associated
The Jacobian algebra arising from a consistent dimer model is a bimodule $3$-Calabi-Yau algebra, and its center is a $3$-dimensional Gorenstein toric singularity. A perfect matching of a dimer model gives the degree making the Jacobian algebra $mathb
Motivated by the BPS/CFT correspondence, we explore the similarities between the classical $beta$-deformed Hermitean matrix model and the $q$-deformed matrix models associated to 3d $mathcal{N}=2$ supersymmetric gauge theories on $D^2times_{q}S^1$ an
We compute characteristic numbers of crepant resolutions of Weierstrass models corresponding to elliptically fibered fourfolds $Y$ dual in F-theory to a gauge theory with gauge group $G$. In contrast to the case of fivefolds, Chern and Pontryagin num