ترغب بنشر مسار تعليمي؟ اضغط هنا

The exchange graph and variations of the ratio of the two Symanzik polynomials

306   0   0.0 ( 0 )
 نشر من قبل Omid Amini
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Omid Amini




اسأل ChatGPT حول البحث

Correlation functions in quantum field theory are calculated using Feynman amplitudes, which are finite dimensional integrals associated to graphs. The integrand is the exponential of the ratio of the first and second Symanzik polynomials associated to the Feynman graph, which are described in terms of the spanning trees and spanning 2-forests of the graph, respectively. In a previous paper with Bloch, Burgos and Fresan, we related this ratio to the asymptotic of the Archimedean height pairing between degree zero divisors on degenerating families of Riemann surfaces. Motivated by this, we consider in this paper the variation of the ratio of the two Symanzik polynomials under bounded perturbations of the geometry of the graph. This is a natural problem in connection with the theory of nilpotent and SL2 orbits in Hodge theory. Our main result is the boundedness of variation of the ratio. For this we define the exchange graph of a given graph which encodes the exchange properties between spanning trees and spanning 2-forests in the graph. We provide a description of the connected components of this graph, and use this to prove our result on boundedness of the variations.

قيم البحث

اقرأ أيضاً

Motivated by the Gaussian symplectic ensemble, Mehta and Wang evaluated the $n$ by $n$ determinant $det((a+j-i)Gamma(b+j+i))$ in 2000. When $a=0$, Ciucu and Krattenthaler computed the associated Pfaffian $Pf((j-i)Gamma(b+j+i))$ with an application to the two dimensional dimer system in 2011. Recently we have generalized the latter Pfaffian formula with a $q$-analogue by replacing the Gamma function by the moment sequence of the little $q$-Jacobi polynomials. On the other hand, Nishizawa has found a $q$-analogue of the Mehta--Wang formula. Our purpose is to generalize both the Mehta-Wang and Nishizawa formulae by using the moment sequence of the little $q$-Jacobi polynomials. It turns out that the corresponding determinant can be evaluated explicitly in terms of the Askey-Wilson polynomials.
134 - Benjamin Moore 2017
In 2009, Brown gave a set of conditions which when satisfied imply that a Feynman integral evaluates to a multiple zeta value. One of these conditions is called reducibility, which loosely says there is an order of integration for the Feynman integra l for which Browns techniques will succeed. Reducibility can be abstracted away from the Feynman integral to just being a condition on two polynomials, the first and second Symanzik polynomials. These polynomials can be defined from graphs, and thus reducibility is a property of graphs. We prove that for a fixed number of external momenta and no masses, reducibility is graph minor closed, correcting the previously claimed proofs of this fact. A computational study of reducibility was undertaken by Bogner and L{u}ders who found that for graphs with $4$-on-shell momenta and no masses, $K_{4}$ with momenta on each vertex is a forbidden minor. We add to this and find that when we restrict to graphs with four on-shell external momenta the following graphs are forbidden minors: $K_{4}$ with momenta on each vertex, $W_{4}$ with external momenta on the rim vertices, $K_{2,4}$ with external momenta on the large side of the bipartition, and one other graph. We do not expect that these minors characterize reducibility, so instead we give structural characterizations of the graphs not containing subsets of these minors. We characterize graphs not containing a rooted $K_{4}$ or rooted $W_{4}$ minor, graphs not containing rooted $K_{4}$ or rooted $W_{4}$ or rooted $K_{2,4}$ minors, and also a characterization of graphs not containing all of the known forbidden minors. Some comments are made on graphs not containing $K_{3,4}$, $K_{6}$ or a graph related to Wagners graph as a minor.
In this paper we present a general scheme for how to relate differential equations for the recurrence coefficients of semi-classical orthogonal polynomials to the Painleve equations using the geometric framework of Okamotos space of initial values. W e demonstrate this procedure in two examples. For semi-classical Laguerre polynomials appearing in [HC17], we show how the recurrence coefficients are connected to the fourth Painleve equation. For discrete orthogonal polynomials associated with the hypergeometric weight appearing in [FVA18] we discuss the relation of the recurrence coefficients to the sixth Painleve equation. In addition to demonstrating the general scheme, these results supplement previous studies [DFS20, HFC20], and we also discuss a number of related topics in the context of the geometric approach, such as Hamiltonian forms of the differential equations for the recurrence coefficients, Riccati solutions for special parameter values, and associated discrete Painleve equations.
The binomial Eulerian polynomials, introduced by Postnikov, Reiner, and Williams, are $gamma$-positive polynomials and can be interpreted as $h$-polynomials of certain flag simplicial polytopes. Recently, Athanasiadis studied analogs of these polynom ials for colored permutations. In this paper, we generalize them to $mathbf{s}$-inversion sequences and prove that these new polynomials have only real roots by the method of interlacing polynomials. Three applications of this result are presented. The first one is to prove the real-rootedness of binomial Eulerian polynomials, which confirms a conjecture of Ma, Ma, and Yeh. The second one is to prove that the symmetric decomposition of binomial Eulerian polynomials for colored permutations is real-rooted. Thirdly, our polynomials for certain $mathbf{s}$-inversion sequences are shown to admit a similar geometric interpretation related to edgewise subdivisions of simplexes.
The domination polynomials of binary graph operations, aside from union, join and corona, have not been widely studied. We compute and prove recurrence formulae and properties of the domination polynomials of families of graphs obtained by various pr oducts, ranging from explicit formulae and recurrences for specific families to more general results. As an application, we show the domination polynomial is computationally hard to evaluate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا