ﻻ يوجد ملخص باللغة العربية
Phase plotting is a useful way of visualising functions on complex space. We reinvent the method in the context of hyperbolic geometry, and we use it to plot functions on various representative surfaces for hyperbolic space, illustrating with direct motions in particular. The reinvention is nontrivial, and we discuss the essential features for ensuring that such visualisations convey useful information. Our approach is to exploit conformal maps between representative surfaces, in order to uniquely represent the preimages of geodesics. Our considerations and methods are prototypical of what one might consider for adapting similar methods of visualisation in other contexts.
For hyperbolic Riemann surfaces of finite geometry, we study Selbergs zeta function and its relation to the relative scattering phase and the resonances of the Laplacian. As an application we show that the conjugacy class of a finitely generated, tor
We propose a method to obtain phase portraits for stochastic systems. Starting from the Fokker-Planck equation, we separate the dynamics into a convective and a diffusive part. We show that stable and unstable fixed points of the convective field cor
We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in
The 3D fundamental diagrams and phase portraits for tunnel traffic is constructed based on the empirical data collected during the last years in the deep long branch of the Lefortovo tunnel located on the 3rd circular highway in Moscow. This tunnel o
Given a domain $G subsetneq Rn$ we study the quasihyperbolic and the distance ratio metrics of $G$ and their connection to the corresponding metrics of a subdomain $D subset G$. In each case, distances in the subdomain are always larger than in the o