ﻻ يوجد ملخص باللغة العربية
We propose a method to obtain phase portraits for stochastic systems. Starting from the Fokker-Planck equation, we separate the dynamics into a convective and a diffusive part. We show that stable and unstable fixed points of the convective field correspond to maxima and minima of the stationary probability distribution if the probability current vanishes at these points. Stochastic phase portraits, which are vector plots of the convective field, therefore indicate the extrema of the stationary distribution and can be used to identify stochastic bifurcations that change the number and stability of these extrema. We show that limit cycles in stochastic phase portraits can indicate ridges of the probability distribution, and we identify a novel type of stochastic bifurcations, where the probability maximum moves to the edge of the system through a gap between the two nullclines of the convective field.
The 3D fundamental diagrams and phase portraits for tunnel traffic is constructed based on the empirical data collected during the last years in the deep long branch of the Lefortovo tunnel located on the 3rd circular highway in Moscow. This tunnel o
In this paper we present the concept of description of random processes in complex systems with the discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time
We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the nat
Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the `curse of dimensionality in high-dimensi
In a recent paper [textit{M. Cristelli, A. Zaccaria and L. Pietronero, Phys. Rev. E 85, 066108 (2012)}], Cristelli textit{et al.} analysed relation between skewness and kurtosis for complex dynamical systems and identified two power-law regimes of no