ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystalline membrane morphology beyond polyhedra

55   0   0.0 ( 0 )
 نشر من قبل Hang Yuan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Elastic crystalline membranes exhibit a buckling transition from sphere to polyhedron. However, their morphologies are restricted to convex polyhedra and are difficult to externally control. Here, we study morphological changes of closed crystalline membrane of super-paramagnetic particles. The competition of magnetic dipole-dipole interactions with the elasticity of this magnetoelastic membrane leads to concave morphologies. Interestingly, as the magnetic field strength increases, the symmetry of the buckled membrane decreases from 5-fold to 3-fold, to 2-fold and, finally, to 1-fold rotational symmetry. This gives the ability to switch the membrane morphology between convex and concave shapes with specific symmetry and provides promising applications for membrane shape control in the design of actuatable micro-containers for targeted delivery systems.



قيم البحث

اقرأ أيضاً

Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion$^{tiny textregistered}$-like ionomer by the imposition of a strong electric field. We observe the formation of novel structures aligned a long the direction of the applied field. The polar head groups of the ionomer side chains aggregate into clusters, which then form rod-like formations which assemble into a hexatic array aligned with the direction of the field. Occasionally these lines of sulfonates and protons form a helical structure. Upon removal of the electric field, the hexatic array of rod-like structures persists, and has a lower calculated free energy than the original isotropic morphology.
100 - Harry Bermudez 2001
Vesicles prepared in water from a series of diblock copolymers and termed polymersomes are physically characterized. With increasing molecular weight $bar{M}_n$, the hydrophobic core thickness $d$ for the self-assembled bilayers of polyethyleneoxide - polybutadiene (PEO-PBD) increases up to 20 $nm$ - considerably greater than any previously studied lipid system. The mechanical responses of these membranes, specifically, the area elastic modulus $K_a$ and maximal areal strain $alpha_c$ are measured by micromanipulation. As expected for interface-dominated elasticity, $K_a$ ($simeq$ 100 $pN/nm$) is found to be independent of $bar{M}_n$. Related mean-field ideas also predict a limiting value for $alpha_c$ which is universal and about 10-fold above that typical of lipids. Experiments indeed show $alpha_c$ generally increases with $bar{M}_n$, coming close to the theoretical limit before stress relaxation is opposed by what might be chain entanglements at the highest $bar{M}_n$. The results highlight the interfacial limits of self-assemblies at the nano-scale.
The current critical review aims to be more than a simple summary and reproduction of previously published work. Many comprehensive reviews and collections can be found in the literature. The main intention is to provide an account of the progress ma de in selected aspects of photoinduced phenomena in non-crystalline chalcogenides, presenting the current understanding of the mechanisms underlying such effects. An essential motive for the present review article has been to assess critically published experimental work in the field.
With numerical simulations of the mW model of water, we investigate the energetic stability of crystalline clusters for both Ice I (cubic and hexagonal ice) and for the metastable Ice 0 phase as a function of the cluster size. Under a large variety o f forming conditions, we find that the most stable cluster changes as a function of size: at small sizes the Ice 0 phase produces the most stable clusters, while at large sizes there is a crossover to Ice I clusters. We further investigate the growth of crystalline clusters with the seeding technique and study the growth patterns of different crystalline clusters. While energetically stable at small sizes, the growth of metastable phases (cubic and Ice 0) is hindered by the formation of coherent grain boundaries. A five-fold symmetric twin boundary for cubic ice, and a newly discovered coherent grain boundary in Ice 0, that promotes cross nucleation of cubic ice. Our work reveals that different local structures can compete with the stable phase in mW water, and that the low energy cost of particular grain boundaries might play an important role in polymorph selection.
We present a technique to fabricate ultrathin (down to 20 nm) uniform electron transparent windows at dedicated locations in a SiN membrane for in situ transmission electron microscopy experiments. An electron-beam (e-beam) resist is spray-coated on the backside of the membrane in a KOH- etched cavity in silicon which is patterned using through-membrane electron-beam lithography. This is a controlled way to make transparent windows in membranes, whilst the topside of the membrane remains undamaged and retains its flatness. Our approach was optimized for MEMS-based heating chips but can be applied to any chip design. We show two different applications of this technique for (1) fabrication of a nanogap electrode by means of electromigration in thin free-standing metal films and (2) making low-noise graphene nanopore devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا