ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency-dependent ab initio Resonance Raman Spectroscopy

59   0   0.0 ( 0 )
 نشر من قبل Gerg\\H{o} Kukucska
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method to compute resonance Raman spectra based on ab initio level calculations using the frequency-dependent Placzek approximation. We illustrate the efficiency of our hybrid quantum-classical method by calculating the Raman spectra of several materials with different crystal structures. Results obtained from our approach agree very well with experimental data in the literature. We argue that our method offers an affordable and far more accurate alternative to the widely used static Placzek approximation.

قيم البحث

اقرأ أيضاً

We analyze how to obtain non-resonant and resonant Raman spectra within the Placzek as well as the Albrecht approximation. Both approximations are derived from the matrix element for light scattering by application of the Kramers, Heisenberg and Dira c formula. It is shown that the Placzek expression results from a semi-classical approximation of the combined electronic and vibrational transition energies. Molecular hydrogen, water and butadiene are studied as test cases. It turns out that the Placzek approximation agrees qualitatively with the more accurate Albrecht formulation even in the resonant regime for the excitations of single vibrational quanta. However, multiple vibrational excitations are absent in Placzek, but can be of similar intensities as single excitations under resonance conditions. The Albrecht approximation takes multiple vibrational excitations into account and the resulting simulated spectra exhibit good agreement with experimental Raman spectra in the resonance region as well.
We study the Raman spectrum of CrI$_3$, a material that exhibits magnetism in a single-layer. We employ first-principles calculations within density functional theory to determine the effects of polarization, strain, and incident angle on the phonon spectra of the 3D bulk and the single-layer 2D structure, for both the high- and low-temperature crystal structures. Our results are in good agreement with existing experimental measurements and serve as a guide for additional investigations to elucidate the physics of this interesting material.
We model Raman processes in silicene and germanene involving scattering of quasiparticles by, either, two phonons, or, one phonon and one point defect. We compute the resonance Raman intensities and lifetimes for laser excitations between 1 and 3$,$e V using a newly developed third-nearest neighbour tight-binding model parametrized from first principles density functional theory. We identify features in the Raman spectra that are unique to the studied materials or the defects therein. We find that in silicene, a new Raman resonance arises from the $2.77,rm$eV $pi-sigma$ plasmon at the M point, measurably higher than the Raman resonance originating from the $2.12,rm$eV $pi$ plasmon energy. We show that in germanene, the lifetimes of charge carriers, and thereby the linewidths of the Raman peaks, are influenced by spin-orbit splittings within the electronic structure. We use our model to predict scattering cross sections for defect induced Raman scattering involving adatoms, substitutional impurities, Stone-Wales pairs, and vacancies, and argue that the presence of each of these defects in silicene and germanene can be qualitatively matched to specific features in the Raman response.
We present a time-dependent density-functional method able to describe the photoelectron spectrum of atoms and molecules when excited by laser pulses. This computationally feasible scheme is based on a geometrical partitioning that efficiently gives access to photoelectron spectroscopy in time-dependent density-functional calculations. By using a geometrical approach, we provide a simple description of momentum-resolved photoe- mission including multi-photon effects. The approach is validated by comparison with results in the literature and exact calculations. Furthermore, we present numerical photoelectron angular distributions for randomly oriented nitrogen molecules in a short near infrared intense laser pulse and helium-(I) angular spectra for aligned carbon monoxide and benzene.
We use a recently developed self-consistent $GW$ approximation to present systematic emph{ab initio} calculations of the conduction band spin splitting in III-V and II-V zincblende semiconductors. The spin orbit interaction is taken into account as a perturbation to the scalar relativistic hamiltonian. These are the first calculations of conduction band spin splittings based on a quasiparticle approach; and because the self-consistent $GW$ scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. The results are compared to the few available experimental data and a previous calculation based on a model one-particle potential. We also briefly address the widely used {bf k}$cdot${bf p} parameterization in the context of these results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا