ﻻ يوجد ملخص باللغة العربية
We use a recently developed self-consistent $GW$ approximation to present systematic emph{ab initio} calculations of the conduction band spin splitting in III-V and II-V zincblende semiconductors. The spin orbit interaction is taken into account as a perturbation to the scalar relativistic hamiltonian. These are the first calculations of conduction band spin splittings based on a quasiparticle approach; and because the self-consistent $GW$ scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. The results are compared to the few available experimental data and a previous calculation based on a model one-particle potential. We also briefly address the widely used {bf k}$cdot${bf p} parameterization in the context of these results.
Relativistic band theoretical calculations reveal that intrinsic spin Hall conductivity in hole-doped archetypical semiconductors Ge, GaAs and AlAs is large $[sim 100 (hbar/e)(Omega cm)^{-1}]$, showing the possibility of spin Hall effect beyond the f
We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar r
A theory for longitudinal (T1) and transverse (T2) electron spin coherence times in zincblende semiconductor quantum wells is developed based on a non-perturbative nanostructure model solved in a fourteen-band restricted basis set. Distinctly differe
We present an emph{ab-initio} study of the graphene quasi-particle band structure as function of the doping in G_0 W_0 approximation. We show that the LDA Fermi velocity is substantially renormalized and this renormalization rapidly decreases as func
To investigate the initial process of Joule heating in semiconductors microscopically and quantitatively, we developed a theoretical framework for the ab initio evaluation of the carrier energy relaxation in semiconductors under a high electric field