ﻻ يوجد ملخص باللغة العربية
Quantum key distribution (QKD) based on the laws of quantum physics allows the secure distribution of secret keys over an insecure channel. Unfortunately, imperfect implementations of QKD compromise its information-theoretical security. Measurement-device-independent quantum key distribution (MDI-QKD) is a promising approach to remove all side channels from the measurement unit, which is regarded as the Achilles heel of QKD. An essential assumption in MDI-QKD is however that the sources are trusted. Here we experimentally demonstrate that a practical source based on a semiconductor laser diode is vulnerable to a laser seeding attack, in which light injected from the communication line into the laser results in an increase of the intensities of the prepared states. The unnoticed increase of intensity may compromise the security of QKD, as we show theoretically for the prepare-and-measure decoy-state BB84 and MDI-QKD protocols. Our theoretical security analysis is general and can be applied to any vulnerability that increases the intensity of the emitted pulses. Moreover, a laser seeding attack might be launched as well against decoy-state based quantum cryptographic protocols beyond QKD.
In this paper we present the quantum control attack on quantum key distribution systems. The cornerstone of the attack is that Eve can use unitary (polar) decomposition of her positive-operator valued measure elements, which allows her to realize the
Counterfactual quantum key distribution (QKD) enables two parties to share a secret key using an interaction-free measurement. Here, we point out that the efficiency of counterfactual QKD protocols can be enhanced by including non-counterfactual bits
In real-life implementations of quantum key distribution (QKD), the physical systems with unwanted imperfections would be exploited by an eavesdropper. Based on imperfections in the detectors, detector control attacks have been successfully launched
In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive opt
The ability of an eavesdropper (Eve) to perform an intercept-resend attack on a free-space quantum key distribution (QKD) receiver by precisely controlling the incidence angle of an attack laser has been previously demonstrated. However, such an atta