ﻻ يوجد ملخص باللغة العربية
In this paper we present the quantum control attack on quantum key distribution systems. The cornerstone of the attack is that Eve can use unitary (polar) decomposition of her positive-operator valued measure elements, which allows her to realize the feed-forward operation (quantum control), change the states in the channel after her measurement and impose them to Bob. Below we consider the general eavesdropping strategy and the conditions those should be satisfied to provide the attack successfully. Moreover we consider several types of the attack, each of them is based on a different type of discrimination. We also provide the example on two non-orthogonal states and discuss different strategies in this case.
Quantum key distribution (QKD) based on the laws of quantum physics allows the secure distribution of secret keys over an insecure channel. Unfortunately, imperfect implementations of QKD compromise its information-theoretical security. Measurement-d
In real-life implementations of quantum key distribution (QKD), the physical systems with unwanted imperfections would be exploited by an eavesdropper. Based on imperfections in the detectors, detector control attacks have been successfully launched
Counterfactual quantum key distribution (QKD) enables two parties to share a secret key using an interaction-free measurement. Here, we point out that the efficiency of counterfactual QKD protocols can be enhanced by including non-counterfactual bits
This chapter describes the application of lasers, specifically diode lasers, in the area of quantum key distribution (QKD). First, we motivate the distribution of cryptographic keys based on quantum physical properties of light, give a brief introduc
Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses. Many of the fundamental concepts and applications in these two fields, such as delayed choice experiments and quantum encryption, are comprehe