ترغب بنشر مسار تعليمي؟ اضغط هنا

Forecasting Angular Cross Correlations Between Diffuse X-ray Emission and the Thermal Sunyaev-Zeldovich Effect

106   0   0.0 ( 0 )
 نشر من قبل Vincent Lakey
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray emission and the thermal Sunyaev-Zeldovich distortion to the Cosmic Microwave Background are two important handles on the gas content of the Universe. The cross-correlation between these effects eliminates noise bias and reduces observational systematic effects. Using analytic models for the cluster profile, we develop a halo model formalism to study this cross-correlation and apply it to forecast the signal-to-noise of upcoming measurements from eROSITA and the Simons Observatory. In the soft X-ray band (0.5--2 keV), we forecast a signal-to-noise of 174 for the cross-power spectrum. Over a wide range of the scales, the X-rays will be signal-dominated, and so sample variance is important. In particular, non-Gaussian (4-point) contributions to the errors highlight the utility of masking massive clusters. Masking clusters down to $10^{14} M_odot$ increases the signal-to-noise of the cross-spectrum to 201. We perform a Fisher Analysis on the fitting coefficients of the Battaglia et al. gas profiles and on cosmological parameters. We find that the cross spectrum is most sensitive to the overall scale of the profiles of pressure and electron density, as well as cosmological parameters $sigma_8$ and $H_0$, but that the large number of parameters form a degenerate set, which makes extracting the information more challenging. Our modeling framework is flexible, and in the future, we can easily extend it to forecast the spatial cross-correlations of surveys of X-ray lines available to high-energy-resolution microcalorimetry, to studies of the Warm-Hot Intergalactic Medium, and other effects.



قيم البحث

اقرأ أيضاً

142 - Sandor M. Molnar , 2012
Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zeldov ich (SZ) effect images compared with high resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were about 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal and therefore the offset between the SZ and X-ray peaks change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak lensing observations of the merging galaxy cluster CL0152-1357. We find that a large relative velocity of 4800 km/s is necessary to explain these observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.
Cosmography provides a direct method to map the expansion history of the Universe in a model-independent way. Recently, different kinds of observations have been used in cosmographic analyses, such as SNe Ia and gamma ray bursts measurements, weak an d strong lensing, cosmic microwave background anisotropies, etc. In this work we examine the prospects for constraining cosmographic parameters from current and future measurements of galaxy clusters distances based on their Sunyaev-Zeldovich effect (SZE) and X-ray observations. By assuming the current observational error distribution, we perform Monte Carlo simulations based on a well-behaved parameterization for the deceleration parameter to generate samples with different characteristics and study the improvement on the determination of the cosmographic parameters from upcoming data. The influence of galaxy clusters (GC) morphologies on the $H_0- q_0$ plane is also investigated.
128 - N. Battaglia 2014
Recent first detections of the cross-correlation of the thermal Sunyaev-Zeldovich (tSZ) signal in Planck cosmic microwave background (CMB) temperature maps with gravitational lensing maps inferred from the Planck CMB data and the CFHTLenS galaxy surv ey provide new probes of the relationship between baryons and dark matter. Using cosmological hydrodynamics simulations, we show that these cross-correlation signals are dominated by contributions from hot gas in the intracluster medium (ICM), rather than diffuse, unbound gas located beyond the virial radius (the missing baryons). Thus, these cross-correlations offer a tool with which to study the ICM over a wide range of halo masses and redshifts. In particular, we show that the tSZ - CMB lensing cross-correlation is more sensitive to gas in lower-mass, higher-redshift halos and gas at larger cluster-centric radii than the tSZ - galaxy lensing cross-correlation. Combining these measurements with primary CMB data will constrain feedback models through their signatures in the ICM pressure profile. We forecast the ability of ongoing and future experiments to constrain such ICM parameters, including the mean amplitude of the pressure - mass relation, the redshift evolution of this amplitude, and the mean outer logarithmic slope of the pressure profile. The results are promising, with $approx 5-20$% precision constraints achievable with upcoming experiments, even after marginalizing over cosmological parameters.
110 - N.G. Czakon , J. Sayers , A. Mantz 2014
We present scaling relations between the integrated Sunyaev-Zeldovich Effect (SZE) signal, $Y_{rm SZ}$, its X-ray analogue, $Y_{rm X}equiv M_{rm gas}T_{rm X}$, and total mass, $M_{rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) s ample. All parameters are integrated within $r_{2500}$. $Y_{2500}$ values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, $T_{rm X}$, and mass, $M_{rm gas,2500}$, of the intracluster medium are determined using X-ray data collected with Chandra, and $M_{rm tot}$ is derived from $M_{rm gas}$ assuming a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the $Y_{2500}$--$Y_{rm X}$ scaling to have a power-law index of $0.84pm0.07$, and a fractional intrinsic scatter in $Y_{2500}$ of $(21pm7)%$ at fixed $Y_{rm X}$, both of which are consistent with previous analyses. We also measure the scaling between $Y_{2500}$ and $M_{2500}$, finding a power-law index of $1.06pm0.12$ and a fractional intrinsic scatter in $Y_{2500}$ at fixed mass of $(25pm9)%$. While recent SZE scaling relations using X-ray mass proxies have found power-law indices consistent with the self-similar prediction of 5/3, our measurement stands apart by differing from the self-similar prediction by approximately 5$sigma$. Given the good agreement between the measured $Y_{2500}$--$Y_{rm X}$ scalings, much of this discrepancy appears to be caused by differences in the calibration of the X-ray mass proxies adopted for each particular analysis.
Thermal Sunyaev-Zeldovich (tSZ) effect and X-ray emission from galaxy clusters have been extensively used to constrain cosmological parameters. These constraints are highly sensitive to the relations between cluster masses and observables (tSZ and X- ray fluxes). The cross-correlation of tSZ and X-ray data is thus a powerful tool, in addition of tSZ and X-ray based analysis, to test our modeling of both tSZ and X-ray emission from galaxy clusters. We chose to explore this cross correlation as both emissions trace the hot gas in galaxy clusters and thus constitute one the easiest correlation that can be studied. We present a complete modeling of the cross correlation between tSZ effect and X-ray emission from galaxy clusters, and focuses on the dependencies with clusters scaling laws and cosmological parameters. We show that the present knowledge of cosmological parameters and scaling laws parameters leads to an uncertainties of 47% on the overall normalization of the tSZ-X cross correlation power spectrum. We present the expected signal-to-noise ratio for the tSZ-X cross-correlation angular power spectrum considering the sensitivity of actual tSZ and X-ray surveys from {it Planck}-like data and ROSAT. We demonstrate that this signal-to-noise can reach 31.5 in realistic situation, leading to a constraint on the amplitude of tSZ-X cross correlation up to 3.2%, fifteen times better than actual modeling limitations. Consequently, used in addition to other probes of cosmological parameters and scaling relations, we show that the tSZ-X is a powerful probe to constrain scaling relations and cosmological parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا