ﻻ يوجد ملخص باللغة العربية
Topological defects are typically quantified relative to ordered backgrounds. The importance of these defects to the understanding of physical phenomena including diverse equilibrium melting transitions from low temperature ordered to higher temperatures disordered systems (and vice versa) can hardly be overstated. Amorphous materials such as glasses seem to constitute a fundamental challenge to this paradigm. A long held dogma is that transitions into and out of an amorphous glassy state are distinctly different from typical equilibrium phase transitions and must call for radically different concepts. In this work, we critique this belief. We examine systems that may be viewed as simultaneous distribution of different ordinary equilibrium structures. In particular, we focus on the analogs of melting (or freezing) transitions in such distributed systems. The theory that we arrive at yields dynamical, structural, and thermodynamic behaviors of glasses and supercooled fluids that, for the properties tested thus far, are in qualitative and quantitative agreement with experiment. We arrive at a prediction for the viscosity and dielectric relaxations that is universally satisfied for all experimentally measured supercooled liquids and glasses over 15 decades.
We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of
We introduce a three-dimensional lattice gas model to study the glass transition. In this model the interactions come from the excluded volume and particles have five arms with an asymmetrical shape, which results in geometric frustration that inhibi
Prediction in complex systems at criticality is believed to be very difficult, if not impossible. Of particular interest is whether earthquakes, whose distribution follows a power law (Gutenberg-Richter) distribution, are in principle unpredictable.
We study the probability distribution $P(X_N=X,N)$ of the total displacement $X_N$ of an $N$-step run and tumble particle on a line, in presence of a constant nonzero drive $E$. While the central limit theorem predicts a standard Gaussian form for $P
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the s