ﻻ يوجد ملخص باللغة العربية
We construct global-in-time singular dynamics for the (renormalized) cubic fourth order nonlinear Schrodinger equation on the circle, having the white noise measure as an invariant measure. For this purpose, we introduce the random-resonant / nonlinear decomposition, which allows us to single out the singular component of the solution. Unlike the classical McKean, Bourgain, Da Prato-Debussche type argument, this singular component is nonlinear, consisting of arbitrarily high powers of the random initial data. We also employ a random gauge transform, leading to random Fourier restriction norm spaces. For this problem, a contraction argument does not work and we instead establish convergence of smooth approximating solutions by studying the partially iterated Duhamel formulation under the random gauge transform. We reduce the crucial nonlinear estimates to boundedness properties of certain random multilinear functionals of the white noise.
We study the stochastic cubic nonlinear wave equation (SNLW) with an additive noise on the three-dimensional torus $mathbb{T}^3$. In particular, we prove local well-posedness of the (renormalized) SNLW when the noise is almost a space-time white nois
In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the stochastic nature of the inequality, the relation between the exponents of intgrability is modified. This modification can be understood as a regularization by
We are concerned with hyperbolic systems of order-one linear PDEs originated on non-characteristic manifolds. We put forward a simple but effective method of transforming such initial conditions to standard initial conditions (i.e. when the solution
We consider a system of stochastic Allen-Cahn equations on a finite network represented by a finite graph. On each edge in the graph a multiplicative Gaussian noise driven stochastic Allen-Cahn equation is given with possibly different potential barr
In this paper we study the Peskin problem in 2D, which describes the dynamics of a 1D closed elastic structure immersed in a steady Stokes flow. We prove the local well-posedness for arbitrary initial configuration in $VMO^1$ satisfying the well-stre