ﻻ يوجد ملخص باللغة العربية
In this paper we study the Peskin problem in 2D, which describes the dynamics of a 1D closed elastic structure immersed in a steady Stokes flow. We prove the local well-posedness for arbitrary initial configuration in $VMO^1$ satisfying the well-stretched condition, and the global well-posedness when the initial configuration is sufficiently close to an equilibrium in $BMO^1$. The global-in-time solution will converge to an equilibrium exponentially as $trightarrow+infty$. This is the first well-posedness result for the Peskin problem with non-Lipschitz initial data.
In this paper we study the asymptotics of the Korteweg--de Vries (KdV) equation with steplike initial data, which leads to shock waves, in the middle region between the dispersive tail and the soliton region, as $t rightarrow infty$. In our previous
We develop a strategy making extensive use of tent spaces to study parabolic equa-tions with quadratic nonlinearities as for the Navier-Stokes system. We begin with a new proof of the well-known result of Koch and Tataru on the well-posedness of Navi
In this note we discuss the diffusive, vector-valued Burgers equations in a three-dimensional domain with periodic boundary conditions. We prove that given initial data in $H^{1/2}$ these equations admit a unique global solution that becomes classica
We consider the inverse Calderon problem consisting of determining the conductivity inside a medium by electrical measurements on its surface. Ideally, these measurements determine the Dirichlet-to-Neumann map and, therefore, one usually assumes the
In this paper, we consider the Cauchy problem to the planar non-resistive magnetohydrodynamic equations without heat conductivity, and establish the global well-posedness of strong solutions with large initial data. The key ingredient of the proof is