ترغب بنشر مسار تعليمي؟ اضغط هنا

Wikipedia and Digital Currencies: Interplay Between Collective Attention and Market Performance

101   0   0.0 ( 0 )
 نشر من قبل Andrea Baronchelli
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The production and consumption of information about Bitcoin and other digital-, or crypto-, currencies have grown together with their market capitalisation. However, a systematic investigation of the relationship between online attention and market dynamics, across multiple digital currencies, is still lacking. Here, we quantify the interplay between the attention towards digital currencies in Wikipedia and their market performance. We consider the entire edit history of currency-related pages, and their view history from July 2015. First, we quantify the evolution of the cryptocurrency presence in Wikipedia by analysing the editorial activity and the network of co-edited pages. We find that a small community of tightly connected editors is responsible for most of the production of information about cryptocurrencies in Wikipedia. Then, we show that a simple trading strategy informed by Wikipedia views performs better, in terms of returns on investment, than classic baseline strategies for most of the covered period. Our results contribute to the recent literature on the interplay between online information and investment markets, and we anticipate it will be of interest for researchers as well as investors.



قيم البحث

اقرأ أيضاً

Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum w ealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erd{o}s-Renyi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and average degree of the considered networks.
According to personality psychology, personality traits determine many aspects of human behaviour. However, validating this insight in large groups has been challenging so far, due to the scarcity of multi-channel data. Here, we focus on the relation ship between mobility and social behaviour by analysing trajectories and mobile phone interactions of $sim 1,000$ individuals from two high-resolution longitudinal datasets. We identify a connection between the way in which individuals explore new resources and exploit known assets in the social and spatial spheres. We show that different individuals balance the exploration-exploitation trade-off in different ways and we explain part of the variability in the data by the big five personality traits. We point out that, in both realms, extraversion correlates with the attitude towards exploration and routine diversity, while neuroticism and openness account for the tendency to evolve routine over long time-scales. We find no evidence for the existence of classes of individuals across the spatio-social domains. Our results bridge the fields of human geography, sociology and personality psychology and can help improve current models of mobility and tie formation.
The organisation of a network in a maximal set of nodes having at least $k$ neighbours within the set, known as $k$-core decomposition, has been used for studying various phenomena. It has been shown that nodes in the innermost $k$-shells play a cruc ial role in contagion processes, emergence of consensus, and resilience of the system. It is known that the $k$-core decomposition of many empirical networks cannot be explained by the degree of each node alone, or equivalently, random graph models that preserve the degree of each node (i.e., configuration model). Here we study the $k$-core decomposition of some empirical networks as well as that of some randomised counterparts, and examine the extent to which the $k$-shell structure of the networks can be accounted for by the community structure. We find that preserving the community structure in the randomisation process is crucial for generating networks whose $k$-core decomposition is close to the empirical one. We also highlight the existence, in some networks, of a concentration of the nodes in the innermost $k$-shells into a small number of communities.
A model for the probabilistic function followed in Wikipedia edition is presented and compared with simulations and real data. It is argued that the probability to edit is proportional to the editors number of previous editions (preferential attachme nt), to the editors fitness and to an ageing factor. Using these simple ingredients, it is possible to reproduce the results obtained for Wikipedia edition dynamics for a collection of single pages as well as the averaged results. Using a stochastic process framework, a recursive equation was obtained for the average of the number of editions per editor that seems to describe the editing behaviour in Wikipedia.
We present a novel method to reconstruct complex network from partial information. We assume to know the links only for a subset of the nodes and to know some non-topological quantity (fitness) characterising every node. The missing links are generat ed on the basis of the latter quan- tity according to a fitness model calibrated on the subset of nodes for which links are known. We measure the quality of the reconstruction of several topological properties, such as the network density and the degree distri- bution as a function of the size of the initial subset of nodes. Moreover, we also study the resilience of the network to distress propagation. We first test the method on ensembles of synthetic networks generated with the Exponential Random Graph model which allows to apply common tools from statistical mechanics. We then test it on the empirical case of the World Trade Web. In both cases, we find that a subset of 10 % of nodes is enough to reconstruct the main features of the network along with its resilience with an error of 5%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا