ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical clock intercomparison with $6times 10^{-19}$ precision in one hour

160   0   0.0 ( 0 )
 نشر من قبل Eric Oelker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Improvements in atom-light coherence are foundational to progress in quantum information science, quantum optics, and precision metrology. Optical atomic clocks require local oscillators with exceptional optical coherence due to the challenge of performing spectroscopy on their ultra-narrow linewidth clock transitions. Advances in laser stabilization have thus enabled rapid progress in clock precision. A new class of ultrastable lasers based on cryogenic silicon reference cavities has recently demonstrated the longest optical coherence times to date. In this work we utilize such a local oscillator, along with a state-of-the-art frequency comb for coherence transfer, with two Sr optical lattice clocks to achieve an unprecedented level of clock stability. Through an anti-synchronous comparison, the fractional instability of both clocks is assessed to be $4.8times 10^{-17}/sqrt{tau}$ for an averaging time $tau$ in seconds. Synchronous interrogation reveals a quantum projection noise dominated instability of $3.5(2)times10^{-17}/sqrt{tau}$, resulting in a precision of $5.8(3)times 10^{-19}$ after a single hour of averaging. The ability to measure sub-$10^{-18}$ level frequency shifts in such short timescales will impact a wide range of applications for clocks in quantum sensing and fundamental physics. For example, this precision allows one to resolve the gravitational red shift from a 1 cm elevation change in only 20 minutes.

قيم البحث

اقرأ أيضاً

We report on an improved systematic evaluation of the JILA SrI optical lattice clock, achieving a nearly identical systematic uncertainty compared to the previous strontium accuracy record set by the JILA SrII optical lattice clock (OLC) at $2.1 time s 10^{-18}$. This improves upon the previous evaluation of the JILA SrI optical lattice clock in 2013, and we achieve a more than twenty-fold reduction in systematic uncertainty to $2.0 times 10^{-18}$. A seven-fold improvement in clock stability, reaching $4.8 times 10^{-17}/sqrt{tau}$ for an averaging time $tau$ in seconds, allows the clock to average to its systematic uncertainty in under 10 minutes. We improve the systematic uncertainty budget in several important ways. This includes a novel scheme for taming blackbody radiation-induced frequency shifts through active stabilization and characterization of the thermal environment, inclusion of higher-order terms in the lattice light shift, and updated atomic coefficients. Along with careful control of other systematic effects, we achieve low temporal drift of systematic offsets and high uptime of the clock. We additionally present an improved evaluation of the second order Zeeman coefficient that is applicable to all Sr optical lattice clocks. These improvements in performance have enabled several important studies including frequency ratio measurements through the Boulder Area Clock Optical Network (BACON), a high precision comparison with the JILA 3D lattice clock, a demonstration of a new all-optical time scale combining SrI and a cryogenic silicon cavity, and a high sensitivity search for ultralight scalar dark matter.
The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of $5.5 times 10^{-19}$. Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now $1times10^{-18}$. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.
We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driv ing fields to form a pair of dressed states essentially free of all relevant shifts. Specifically, the clock transition is robust to magnetic shifts, quadrupole and other tensor shifts, and amplitude fluctuations of the driving fields. The scheme is applicable to either a single ion or an ensemble of ions, and is relevant for several types of ions, such as $^{40}mathrm{Ca}^{+}$, $^{88}mathrm{Sr}^{+}$, $^{138}mathrm{Ba}^{+}$ and $^{176}mathrm{Lu}^{+}$. Taking a spherically symmetric Coulomb crystal formed by 400 $^{40}mathrm{Ca}^{+}$ ions as an example, we show through numerical simulations that the inhomogeneous linewidth of tens of Hertz in such a crystal together with linear Zeeman shifts of order 10~MHz are reduced to form a linewidth of around 1~Hz. We estimate a two-order-of-magnitude reduction in averaging time compared to state-of-the art single ion frequency references, assuming a probe laser fractional instability of $10^{-15}$. Furthermore, a statistical uncertainty reaching $2.9times 10^{-16}$ in 1~s is estimated for a cascaded clock scheme in which the dynamically decoupled Coulomb crystal clock stabilizes the interrogation laser for an $^{27}mathrm{Al}^{+}$ clock.
We consider hyperfine-mediated effects for clock transitions in $^{176}$Lu$^+$. Mixing of fine structure levels due to the hyperfine interaction bring about modifications to Lande $g$-factors and the quadrupole moment for a given state. Explicit expr essions are derived for both $g$-factor and quadrupole corrections, for which leading order terms arise from the nuclear magnetic dipole coupling. High accuracy measurements of the $g$-factors for the $^1S_0$ and $^3D_1$ hyperfine levels are carried out, which provide an experimental determination of the leading order correction terms.
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes. With the higher density afforded by two-dimensional lattice confinement, we demonstrate that strong interactions can lead to a novel suppression of this collision shift. In addition to reducing the systematic errors of lattice clocks, this work has application to quantum information and quantum simulation with alkaline-earth atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا