ﻻ يوجد ملخص باللغة العربية
We consider hyperfine-mediated effects for clock transitions in $^{176}$Lu$^+$. Mixing of fine structure levels due to the hyperfine interaction bring about modifications to Lande $g$-factors and the quadrupole moment for a given state. Explicit expressions are derived for both $g$-factor and quadrupole corrections, for which leading order terms arise from the nuclear magnetic dipole coupling. High accuracy measurements of the $g$-factors for the $^1S_0$ and $^3D_1$ hyperfine levels are carried out, which provide an experimental determination of the leading order correction terms.
High precision spectroscopy of the $^1S_0$-to-${^1}D_2$ clock transition of $^{176}$Lu is reported. Measurements are performed with Hertz level precision with the accuracy of the hyperfine-averaged frequency limited by the calibration of an active hy
We report the observation of the higher order frequency shift due to the trapping field in a $^{87}$Sr optical lattice clock. We show that at the magic wavelength of the lattice, where the first order term cancels, the higher order shift will not con
We demonstrate precision measurement and control of inhomogeneous broadening in a multi-ion clock consisting of three $^{176}$Lu$^+$ ions. Microwave spectroscopy between hyperfine states in the $^3D_1$ level is used to characterise differential syste
We present a novel method for engineering an optical clock transition that is robust against external field fluctuations and is able to overcome limits resulting from field inhomogeneities. The technique is based on the application of continuous driv
We study ultracold collisions in fermionic ytterbium by precisely measuring the energy shifts they impart on the atoms internal clock states. Exploiting Fermi statistics, we uncover p-wave collisions, in both weakly and strongly interacting regimes.