ترغب بنشر مسار تعليمي؟ اضغط هنا

Kick and fix: the roots of quantum control

104   0   0.0 ( 0 )
 نشر من قبل Paolo Facchi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When two operators $A$ and $B$ do not commute, the calculation of the exponential operator $e^{A+B}$ is a difficult and crucial problem. The applications are vast and diversified: to name but a few examples, quantum evolutions, product formulas, quantum control, Zeno effect. The latter are of great interest in quantum applications and quantum technologies. We present here a historical survey of results and techniques, and discuss differences and similarities. We also highlight the link with the strong coupling regime, via the adiabatic theorem, and contend that the pulsed and continuous formulations differ only in the order by which two limits are taken, and are but two faces of the same coin.



قيم البحث

اقرأ أيضاً

The Clifford+$T$ quantum computing gate library for single qubit gates can create all unitary matrices that are generated by the group $langle H, Trangle$. The matrix $T$ can be considered the fourth root of Pauli $Z$, since $T^4 = Z$ or also the eig hth root of the identity $I$. The Hadamard matrix $H$ can be used to translate between the Pauli matrices, since $(HTH)^4$ gives Pauli $X$. We are generalizing both these roots of the Pauli matrices (or roots of the identity) and translation matrices to investigate the groups they generate: the so-called Pauli root groups. In this work we introduce a formalization of such groups, study finiteness and infiniteness properties, and precisely determine equality and subgroup relations.
174 - Luis G.C. Rego , L. F. Santos , 2010
Coherent optical control schemes exploit the coherence of laser pulses to change the phases of interfering dynamical pathways in order to manipulate dynamical processes. These active control methods are closely related to dynamical decoupling techniq ues, popularized in the field of Quantum Information. Inspired by Nuclear Magnetic Resonance (NMR) spectroscopy, dynamical decoupling methods apply sequences of unitary operations to modify the interference phenomena responsible for the system dynamics thus also belonging to the general class of coherent control techniques. Here we review related developments in the fields of coherent optical control and dynamical decoupling, with emphasis on control of tunneling and decoherence in general model systems. Considering recent experimental breakthroughs in the demonstration of active control of a variety of systems, we anticipate that the reviewed coherent control scenarios and dynamical decoupling methods should raise significant experimental interest.
Quantum algorithm is an algorithm for solving mathematical problems using quantum systems encoded as information, which is found to outperform classical algorithms in some specific cases. The objective of this study is to develop a quantum algorithm for finding the roots of nth degree polynomials where n is any positive integer. In classical algorithm, the resources required for solving this problem increase drastically when n increases and it would be impossible to practically solve the problem when n is large. It was found that any polynomial can be rearranged into a corresponding companion matrix, whose eigenvalues are roots of the polynomial. This leads to a possibility to perform a quantum algorithm where the number of computational resources increase as a polynomial of n. In this study, we construct a quantum circuit representing the companion matrix and use eigenvalue estimation technique to find roots of polynomial.
Controllability -- the possibility of performing any target dynamics by applying a set of available operations -- is a fundamental requirement for the practical use of any physical system. For finite-dimensional systems, as for instance spin systems, precise criterions to establish controllability, such as the so called rank criterion, are well known. However most physical systems require a description in terms of an infinite-dimensional Hilbert space whose controllability properties are poorly understood. Here, we investigate infinite-dimensional bosonic quantum systems -- encompassing quantum light, ensembles of bosonic atoms, motional degrees of freedom of ions, and nano-mechanical oscillators -- governed by quadratic Hamiltonians (such that their evolution is analogous to coupled harmonic oscillators). After having highlighted the intimate connection between controllability and recurrence in the Hilbert space, we prove that, for coupled oscillators, a simple extra condition has to be fulfilled to extend the rank criterion to infinite dimensional quadratic systems. Further, we present a useful application of our finding, by proving indirect controllability of a chain of harmonic oscillators.
We establish general limits on how precise a parameter, e.g. frequency or the strength of a magnetic field, can be estimated with the aid of full and fast quantum control. We consider uncorrelated noisy evolutions of N qubits and show that fast contr ol allows to fully restore the Heisenberg scaling (~1/N^2) for all rank-one Pauli noise except dephasing. For all other types of noise the asymptotic quantum enhancement is unavoidably limited to a constant-factor improvement over the standard quantum limit (~1/N) even when allowing for the full power of fast control. The latter holds both in the single-shot and infinitely-many repetitions scenarios. However, even in this case allowing for fast quantum control helps to increase the improvement factor. Furthermore, for frequency estimation with finite resource we show how a parallel scheme utilizing any fixed number of entangled qubits but no fast quantum control can be outperformed by a simple, easily implementable, sequential scheme which only requires entanglement between one sensing and one auxiliary qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا