ﻻ يوجد ملخص باللغة العربية
Quantum algorithm is an algorithm for solving mathematical problems using quantum systems encoded as information, which is found to outperform classical algorithms in some specific cases. The objective of this study is to develop a quantum algorithm for finding the roots of nth degree polynomials where n is any positive integer. In classical algorithm, the resources required for solving this problem increase drastically when n increases and it would be impossible to practically solve the problem when n is large. It was found that any polynomial can be rearranged into a corresponding companion matrix, whose eigenvalues are roots of the polynomial. This leads to a possibility to perform a quantum algorithm where the number of computational resources increase as a polynomial of n. In this study, we construct a quantum circuit representing the companion matrix and use eigenvalue estimation technique to find roots of polynomial.
We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over GF(q). A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2+1/2 quantum queries are needed to so
For two unknown quantum states $rho$ and $sigma$ in an $N$-dimensional Hilbert space, computing their fidelity $F(rho,sigma)$ is a basic problem with many important applications in quantum computing and quantum information, for example verification a
Unitary Fourier transform lies at the core of the multitudinous computational and metrological algorithms. Here we show experimentally how the unitary Fourier transform-based phase estimation protocol, used namely in quantum metrology, can be transla
We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentia
Let $H$ be a fixed $k$-vertex graph with $m$ edges and minimum degree $d >0$. We use the learning graph framework of Belovs to show that the bounded-error quantum query complexity of determining if an $n$-vertex graph contains $H$ as a subgraph is $O