ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing minijet dynamics via centrality dependence of the double parton interactions in proton-nucleus interactions

50   0   0.0 ( 0 )
 نشر من قبل Massimiliano Alvioli
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the main challenges hampering an accurate measurement of the double parton scattering (DPS) cross sections is the difficulty in separating the DPS from the leading twist (LT) contributions. We argue that such a separation can be achieved, and cross section of DPS measured, by exploiting the different centrality dependence of DPS and LT processes in proton-nucleus scattering. We developed a Monte Carlo implementation of the DPS processes which includes realistic nucleon-nucleon (NN) correlations in nuclei, an accurate description of transverse geometry of both hard and soft NN collisions as well as fluctuations of the strength of interaction of nucleon with nucleus (color fluctuation effects). Our method allows the calculation of probability distributions of single and double dijet events as a function of centrality, also distinguishing double hard scatterings originating from a single target nucleon and from two different nucleons. We present numerical results for the rate of DPS as a function of centrality, which relates the number of wounded nucleons and the sum of transverse energy of hadrons produced at large negative (along the nucleus direction) rapidities, which is experimentally measurable. We suggest a new quantity which allows to test the geometry of DPS and we argue that it is a universal function of centrality for different DPS processes. This quantity can be tested by analyzing existing LHC data. The method developed in this work can be extended to the search for triple parton interactions.



قيم البحث

اقرأ أيضاً

We study the single-spin asymmetry, $A_N(t)$, arising from Coulomb-nuclear interference (CNI) at small 4-momentum transfer squared, $-t=q^2$, aiming at explanation of the recent data from the PHENIX experiment at RHIC on polarized proton-nucleus scat tering, exposing a nontrivial $t$-dependence of $A_N$. We found that the failure of previous theoretical attempts to explain these data, was due to lack of absorptive corrections in the Coulomb amplitude of $pA$ elastic scattering. Our prominent observation is that the main contribution to $A_N(t)$ comes from interference of the amplitudes of ultra-peripheral and central collisions.
78 - V. V. Vechernin 2007
In the framework of the classical Glauber approach the exact analytical expression for the variance of the number of participants (wounded nucleons) for given centrality AA interactions is presented. Its shown, that in the case of nucleus-nucleus col lisions along with the optical approximation term the additional contact term appears. The numerical calculations for PbPb collisions at SPS energies show that at intermediate values of the impact parameter the optical and contact terms contributions to the variance of the participants number are of the same order and their sum is in a good agreement with the results of independent MC simulations of this process. The correlation between the numbers of participants in colliding nuclei is taken into account. In particular its demonstrated that in PbPb collisions at SPS energies the variance of the total number of participants approximately three times exceeds the Poisson one in the impact parameter region 10-12 Fm. The fluctuations of the number of collisions are also discussed.
We provide a compilation of predictions of the QGSJET-II-04m model for the production of secondary species (photons, neutrinos, electrons, positrons, and antinucleons) that are covering a wide range of energies of the beam particles in proton-proton, proton-nucleus, nucleus-proton, and nucleus-nucleus reactions. The current version of QGSJET-II-04m has an improved treatment of the production of secondary particles at low energies: the parameters of the hadronization procedure have been fine-tuned, based on a number of recent benchmark experimental data, notably, from the LHCf, LHCb, and NA61 experiments. Our results for the production spectra are made publicly accessible through the interpolation routines AAfrag which are described below. Besides, we comment on the impact of Feynman scaling violation and isospin symmetry effects on antinucleon production.
In the framework of the classical Glauber approach, the analytical expressions for the variance of the number of wounded nucleons and binary collisions in AA interactions at a given centrality are presented. Along with the optical approximation term, they contain additional contact terms arising only in the case of nucleus-nucleus collisions. The magnitude of the additional contributions, e.g., for PbPb collisions at SPS energies, is larger than the contribution of the optical approximation at some values of the impact parameter. The sum of the additional contributions is in good agreement with the results of independent Monte Carlo simulations of this process. Due to these additional terms, the variance of the total number of participants for peripheral PbPb collisions and the variance of the number of collisions at all values of the impact parameter exceed several multiples of the Poisson variances. The correlator between the numbers of participants in colliding nuclei at fixed centrality is also analytically calculated.
The study of higher-order moments of a distribution and its cumulants constitute a sensitive tool to investigate the correlations between the particle produced in high energy interactions. In our previous work we have used the Tsallis $q$ statistics, NBD, Gamma and shifted Gamma distributions to describe the multiplicity distributions in $pi ^-$ -nucleus and $p$ -nucleus fixed target interactions at various energies ranging from P$_{Lab}$ = 27 GeV to 800 GeV. In the present study we have extended our analysis by calculating the moments using the Tsallis model at these fixed target experiment data. By using the Tsallis model we have also calculated the average charged multiplicity and its dependence on energy. It is found that the average charged multiplicity and moments predicted by the Tsallis statistics are in much agreement with the experimental values and indicates the success of the Tsallis model on data from visual detectors. The study of moments also illustrates that KNO scaling hypothesis holds good at these energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا