ﻻ يوجد ملخص باللغة العربية
In the framework of the classical Glauber approach the exact analytical expression for the variance of the number of participants (wounded nucleons) for given centrality AA interactions is presented. Its shown, that in the case of nucleus-nucleus collisions along with the optical approximation term the additional contact term appears. The numerical calculations for PbPb collisions at SPS energies show that at intermediate values of the impact parameter the optical and contact terms contributions to the variance of the participants number are of the same order and their sum is in a good agreement with the results of independent MC simulations of this process. The correlation between the numbers of participants in colliding nuclei is taken into account. In particular its demonstrated that in PbPb collisions at SPS energies the variance of the total number of participants approximately three times exceeds the Poisson one in the impact parameter region 10-12 Fm. The fluctuations of the number of collisions are also discussed.
In the framework of the classical Glauber approach, the analytical expressions for the variance of the number of wounded nucleons and binary collisions in AA interactions at a given centrality are presented. Along with the optical approximation term,
We discuss multiplicity fluctuations of charged particles produced in nuclear collisions measured event-by-event by the NA49 experiment at CERN SPS within the Glauber Monte Carlo approach. We use the concepts of wounded nucleons and wounded quarks in
As one of the possible signals for the whereabouts of the critical point on the QCD phase diagram, recently, the multiplicity fluctuations in heavy-ion collisions have aroused much attention. It is a crucial observable of the Beam Energy Scan program
One of the main challenges hampering an accurate measurement of the double parton scattering (DPS) cross sections is the difficulty in separating the DPS from the leading twist (LT) contributions. We argue that such a separation can be achieved, and
We investigate the effects of repulsive interaction between hadrons on the fluctuations of the conserved charges. We calculate the baryon,the electric charge and the strangeness susceptibilities within the ambit of hadron resonance gas model extended