ﻻ يوجد ملخص باللغة العربية
Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion Larmor radius, the ions do not respond to the reconnection dynamics leading to electron-only reconnection with very large quasi-steady reconnection rates. The transition to more traditional ion-coupled reconnection is gradual as the reconnection domain size increases, with the ions becoming frozen-in in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasi-steady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with exhaust width during this electron-only to ion-coupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozen-in ion exhaust with ion flows comparable to the reconnection Alfven speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments we estimate that fully ion-coupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths.
We report electrostatic Debye-scale turbulence developing within the diffusion region of asymmetric magnetopause reconnection with moderate guide field using observations by the Magnetospheric Multiscale (MMS) mission. We show that Buneman waves and
We analyze the development and influence of turbulence in three-dimensional particle-in-cell simulations of guide-field magnetic reconnection at the magnetopause with parameters based on observations of an electron diffusion region by the Magnetosphe
The recently released spacecraft potential measured by the RPW instrument on-board Solar Orbiter has been used to estimate the solar wind electron density in the inner heliosphere. Solar-wind electron density measured during June 2020 has been analys
The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in-situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work d
The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov-Maxwell simulations of colissionless plasmas, Hall-magnetoh